Toggle light / dark theme

Nowadays, there’s lots of buzz about spectacular new medical treatments, such as personalized cancer therapy with modified immune cells or antibodies. Such treatments, however, are very complex and expensive and so find only limited application. Most medical therapies are still based on small chemical compounds that can be produced in large quantities and thus at low cost.

To build light-based quantum technologies, scientists and engineers need the ability to generate and manipulate photons as individuals or a few at a time. To build such quantum photonic logic gates that might be used in an optical quantum computer requires a special medium which allows strong and controlled interactions of just a few photons.

Thousands of light particles can merge into a type of “super photon” under certain conditions. Researchers at the University of Bonn have now been able to use “tiny nano molds” to influence the design of this so-called Bose-Einstein condensate. This enables them to shape the speck of light into a simple lattice structure consisting of four points of light arranged in quadratic form.

Widely utilized across various industries such as chemistry, agriculture, and military, this technology relies on strategies like dispersive optics and narrow-band light filters.

However, limitations exist in these approaches. Additionally, the fabrication of large-scale InGaAs detector arrays poses challenges, necessitating the development of new experimental methods and algorithms to advance infrared hyperspectral imaging technology in terms of miniaturization and cost-effectiveness.

In a paper published in Light Science & Applications, a team led by Professor Baoqing Sun and Yuan Gao from Shandong University introduce a novel method for encoding near-infrared spectral and spatial data.

A recent study underscores the dynamic nature of black holes and extends similar thermodynamic characteristics to Extremely Compact Objects, advancing our comprehension of their behavior in quantum gravity scenarios.

A paper titled “Universality of the thermodynamics of a quantum-mechanically radiating black hole departing from thermality,” published in Physics Letters B highlights the importance of considering black holes as dynamical systems, where variations in their geometry during radiation emissions are critical to accurately describing their thermodynamic behavior.

Bridging black holes and extremely compact objects.