Toggle light / dark theme

It is pleasure for us to bring the ECFG conference to the island of Ireland from mainland Europe, we believe the conference will be a great scientific and social success.

We believe that Ireland is an ideal location which is accessible with low fare economic flights both from Europe and America and more than 20,000 hotel bed capacity for potential participants.

There will be a rich repertoire of research highlights from early, mid and advanced career researchers in the field of fungal genetics and biology. Our venue, the Convention Centre Dublin, is in a perfect location in the heart of Dublin city.

When a magnetar within the Milky Way galaxy belched out a flare of colossally powerful radio waves in 2020, scientists finally had concrete evidence to pin down an origin for fast radio bursts.

A mind-blowing new study has now narrowed down the mechanism. By studying the twinkling light of a fast radio burst detected in 2022, a team of astronomers has traced its source to the powerful magnetic field around a magnetar, in a galaxy 200 million light-years away.

It’s the first conclusive evidence that fast radio bursts can emerge from the magnetospheres of magnetars.

🧬 🧑🏻‍🔬 By Prof. Itzhak Fishov, et al.

🔗


Phenotypic variability in isogenic bacterial populations is a remarkable feature that helps them cope with external stresses, yet it is incompletely understood. This variability can stem from gene expression noise and/or the unequal partitioning of low-copy-number freely diffusing proteins during cell division. Some high-copy-number components are transiently associated with almost immobile large assemblies (hyperstructures) and may be unequally distributed, contributing to bacterial phenotypic variability. We focus on the nucleoid hyperstructure containing numerous DNA-associated proteins, including the replication initiator DnaA. Previously, we found an increasing asynchrony in the nucleoid segregation dynamics in growing E. coli cell lineages and suggested that variable replication initiation timing may be the main cause of this phenomenon.

From the early days of quantum mechanics, scientists have thought that all particles can be categorized into one of two groups—bosons or fermions—based on their behavior.

However, new research by Rice University physicist Kaden Hazzard and former Rice graduate student Zhiyuan Wang shows the possibility of particles that are neither bosons nor fermions. Their study, published in Nature, mathematically demonstrates the potential existence of paraparticles that have long been thought impossible.

“We determined that new types of particles we never knew of before are possible,” said Hazzard, associate professor of physics and astronomy.