Toggle light / dark theme

Gene editing of human embryos — yes or not?


If there is a discernible duty here it is surely to create the best possible child. That is what it is to act for the best, all things considered. This we have moral reasons to do; but they are not necessarily overriding reasons.

Steven Hawking initially predicted that we might have about 7.6 billion years to go before the Earth gives up on us; he recently revised his position in relation to the Earth’s continuing habitability as opposed to its physical survival: “We must also continue to go into space for the future of humanity,” he said recently. “I don’t think we will survive another thousand years without escaping beyond our fragile planet.”

Steven Hawking: “I don’t think we will survive another thousand years without escaping beyond our fragile planet.”


Probably the most notable direct result of space exploration is satellites. Once we could position a ship in orbit and take telemetry, we knew we could place unmanned pieces of equipment there and just let it orbit, running on its own, while receiving orders from the ground. From those satellites, we have created a global communication system and the global positioning system (GPS) that powers most of our communications capabilities today. What can bring peace and harmony on the planet more than our ability to communicate with each other beyond geographic and political boundaries? These technologies have been enhancing and saving for years.

Thanks to orbital technologies, we could explore the surrounding universe through orbital telescopes and the International Space Station (ISS). We have been studying the universe through lenses unhindered by the atmosphere. We’ve sent drones to explore the moon, Mars and other astral bodies in our solar system. Just like in the early space race, our engineers found yet more solutions that will improve our Earthly lives.

In October 2019, Liu and his colleagues published a paper in Nature, describing an even newer technology, called prime editing. Prime editing can not only make all twelve of the possible base substitutions, it can also make multiple-base insertions or deletions, without requiring a double-strand break. It achieves this with a multi-step operation that first cuts one strand, then performs the appropriate substitution, insertion, or deletion, and then nicks the second strand to allow the bases on the second strand to be replaced by bases that complement the ones substituted, inserted into or deleted from the first strand. The result is a modified stretch of DNA that had never been completely separated. This has the effect of massively reducing the number of off-target modifications.

This new prime editing variant of CRISPR technology, can make the same corrections to the defects that cause sickle cell disease and beta-thalassemia that standard CRISPR/Cas9 has now made in human subjects, but with less opportunity for unwanted off-target changes. Furthermore, its possible applicability is much wider. The ClinVar database lists over 75,000 pathogenic mutations in the human genome. Of these, over 89% are potentially correctable by prime editing.

From zinc fingers to TALE, to CRISPR/Cas9 to base editing and now to prime editing, progress in gene editing has been accelerating. The next advances are currently being aggressively pursued in laboratories all over the world. It will probably be several years before the therapies that are currently being researched are applied routinely in a clinical setting. However, for people who up until recently have had no hope for a cure to a disease suffered by their child, or even themselves, these are exciting times. The prospect of effective treatments, or even cures, is now a valid cause for hope.

The Human Genome Project is probably the most ambitious scientific proposal ever made.


ii. writing DNA

Synthesising short, single stranded fragments of DNA, called oligonucleotides (oligos for short) has been automated and affordable for a number of years now, and almost every biology laboratory in the world uses these short fragments (usually 18–25 base-pairs — compare this to the human genome which is 3 billion base-pairs long) for applications ranging from disease diagnostics to making genetically modified plants. What really has been a game-changer in DNA synthesis is the ability to synthesise longer pieces of DNA and the ability to join these together efficiently to form synthetic gene length fragments.

How close are we to creating a synthetic human genome?


Creating humans is also an ethical minefield. Unsettled questions about who might own a synthetic human genome abound. Boeke warns that ownership could come down to who ends up funding the project development. Rob Carlson, a co-author of the GP-Write proposal, is even more skeptical of the idea of a patented artificial human genome, pointing out via email that “as soon as there is any possibility of a synthetic genome being used to germinate a live human, then ownership is obviously out of the question anyway…because you are now talking about owning a person.”

So far the GP-write project has been more talk than action, with large consultation meetings held between scientists and policy experts. The project has yet to attract significant funding. Perhaps successes in other organisms like yeast will embolden governments and private industry to open up to the idea of a man-made human genome.

Afghanistan’s first-ever robot waitress glides up to a table of curious diners in central Kabul and presents them with a plate of French fries.

“Thank you very much,” the machine says in Dari, one of Afghanistan’s two main languages.

Restaurant manager Mohammad Rafi Shirzad says the humanoid robot, imported from Japan and designed to look vaguely like a women wearing a hijab, has already pulled in new customers since it started working last month.

Newborn screening covers more than 30 conditions. Yet, with genome sequencing, we could screen newborns for several thousand genetic conditions.


In the surveys’ open-ended responses about risks of genome sequencing, parents and clinicians both expressed concerns about psychological distress related to difficult or uncertain results. Clinicians were more likely to raise concerns about returning results for adult-onset conditions, unnecessary parental stress over health problems that might never actually occur, and the possibility of future discrimination against the child on the basis of their genomic information.

On the other hand, parents mentioned a broader range of benefits than clinicians. Both parents and clinicians saw potential health benefits of genome sequencing, such as the ability to search for more conditions compared to standard newborn screening and the ability to predict a child’s future disease risks. Parents went further, though, seeing benefits in family planning, preparing for the child’s future, and knowledge just for the sake of knowing. Those potential benefits fall outside of traditional definitions of clinical utility, which means they are less likely to be considered in the professional guidelines that steer adoption of practices like genome sequencing.