Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

How wide are faults? Earthquake study reveals fault zones are sprawling networks, not single strands

At the Seismological Society of America’s Annual Meeting, researchers posed a seemingly simple question: how wide are faults?

Using data compiled from single earthquakes across the world, Christie Rowe of the Nevada Seismological Laboratory at the University of Nevada, Reno and Alex Hatem of the U.S. Geological Survey sought a more comprehensive answer, one that considers both surface and deep traces of seismic rupture and creep.

By compiling observations of recent earthquakes, Rowe and Hatem conclude that from Turkey to California, it’s not just a single strand of a but quite often a branching network of fault strands involved in an , making the fault zone hundreds of meters wide.

Detecting the anomalous Hall effect without magnetization in a new class of materials

An international research team led by Mayukh Kumar Ray, Mingxuan Fu, and Satoru Nakatsuji from the University of Tokyo, along with Collin Broholm from Johns Hopkins University, has discovered the anomalous Hall effect in a collinear antiferromagnet.

More strikingly, the anomalous Hall effect emerges from a non-Fermi liquid state, in which electrons do not interact according to conventional models. The discovery not only challenges the textbook framework for interpreting the anomalous Hall effect but also widens the range of antiferromagnets useful for information technologies.

The findings are published in the journal Nature Communications.

/* */