Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

New family of quasiparticles appears in graphene

Researchers identify Brown-Zak fermions in superlattices made from the carbon sheet.


Researchers at the University of Manchester in the UK have identified a new family of quasiparticles in superlattices made from graphene sandwiched between two slabs of boron nitride. The work is important for fundamental studies of condensed-matter physics and could also lead to the development of improved transistors capable of operating at higher frequencies.

In recent years, physicists and materials scientists have been studying ways to use the weak (van der Waals) coupling between atomically thin layers of different crystals to create new materials in which electronic properties can be manipulated without chemical doping. The most famous example is graphene (a sheet of carbon just one atom thick) encapsulated between another 2D material, hexagonal boron nitride (hBN), which has a similar lattice constant. Since both materials also have similar hexagonal structures, regular moiré patterns (or “superlattices”) form when the two lattices are overlaid.

If the stacked layers of graphene-hBN are then twisted, and the angle between the two materials’ lattices decreases, the size of the superlattice increases. This causes electronic band gaps to develop through the formation of additional Bloch bands in the superlattice’s Brillouin zone (a mathematical construct that describes the fundamental ideas of electronic energy bands). In these Bloch bands, electrons move in a periodic electric potential that matches the lattice and do not interact with one another.

DeepMind solves 50-year-old ‘grand challenge’ with protein folding A.I.

LONDON — Alphabet-owned DeepMind has developed a piece of artificial intelligence software that can accurately predict the structure that proteins will fold into in a matter of days, solving a 50-year-old “grand challenge” that could pave the way for better understanding of diseases and drug discovery.

Every living cell has thousands of different proteins inside that keep it alive and well. Predicting the shape that a protein will fold into is important because it determines their function and nearly all diseases, including cancer and dementia, are related to how proteins function.

“Proteins are the most beautiful, gorgeous structures and the ability to predict exactly how they fold up is really very, very challenging and has occupied many people over many years,” Professor Dame Janet Thornton from the European Bioinformatics Institute told journalists on a call.

Scientists Confirm Entirely New Species of Gelatinous Blob From The Deep, Dark Sea

For the first time, scientists with the National Oceanic and Atmospheric Administration (NOAA) have formally identified a new species of undersea creature based solely on high-definition video footage captured at the bottom of the ocean.

And what an undersea creature it is. Meet Duobrachium sparksae – a strange, gelatinous species of ctenophore, encountered by the remotely operated vehicle (ROV) Deep Discoverer during a dive off the coast of Puerto Rico.

That encounter took place back in 2015, but when you’re laying claim to discovering a wholly new species – based solely on video evidence, for that matter, with no physical specimens to help make your case – it helps to do your due diligence.

World’s smallest atom-memory unit created

Faster, smaller, smarter and more energy-efficient chips for everything from consumer electronics to big data to brain-inspired computing could soon be on the way after engineers at The University of Texas at Austin created the smallest memory device yet. And in the process, they figured out the physics dynamic that unlocks dense memory storage capabilities for these tiny devices.

The research published recently in Nature Nanotechnology builds on a discovery from two years ago, when the researchers created what was then the thinnest storage device. In this new work, the researchers reduced the size even further, shrinking the cross section area down to just a single square nanometer.

Getting a handle on the physics that pack dense memory storage capability into these devices enabled the ability to make them much smaller. Defects, or holes in the material, provide the key to unlocking the high-density memory storage capability.