Menu

Blog

Page 822

Aug 6, 2024

Long-Standing Quantum Problem Finally Solved

Posted by in categories: computing, particle physics, quantum physics

An answer to a decades-old question in the theory of quantum entanglement raises more questions about this quirky phenomenon.

Physicists have a long list of open problems they consider important for advancing the field of quantum information. Problem 5 asks whether a system can exist in its maximally entangled state in a realistic scenario, in which noise is present. Now Julio de Vicente at Carlos III University of Madrid has answered this fundamental quantum question with a definitive “no” [1]. De Vicente says that he hopes his work will “open a new research avenue within entanglement theory.”

From quantum sensors to quantum computers, many technologies require quantum mechanically entangled particles to operate. The properties of such particles are correlated in a way that would not be possible in classical physics. Ideally, for technology applications, these particles should be in the so-called maximally entangled state, one in which all possible measures of entanglement are maximized. Scientists predict that particles can exist in this state in the absence of experimental, environmental, and statistical noise. But it was unclear whether the particles could also exist in a maximally entangled state in real-world scenarios, where noise is unavoidable.

Aug 6, 2024

Visualizing Atom Currents in Optical Lattices

Posted by in categories: particle physics, quantum physics

A new manipulation technique could enable the realization of more versatile quantum simulators.

The Born rule, formulated almost a century ago, says that measuring a system yields an outcome whose probability is determined by the wave-function amplitude. As if by magic, preparing a quantum system in the same way and performing the same measurement can produce different results. For a long time, the Born rule’s probabilistic nature was more of a theoretical concept. But with the advent of quantum simulators, it has become an experimental reality. So-called snapshots—different measurement outcomes of the same quantum many-body state—are routinely measured. In the case of cold atoms in optical lattices, such snapshots are images that show with single-site resolution whether an atom is present or not. Now Alexander Impertro of the Ludwig Maximilian University of Munich and his collaborators have devised a way to take snapshots not just of atoms’ whereabouts but also of properties analogous to currents and local kinetic energy in crystals [1].

Aug 6, 2024

Researchers achieve super-Bloch oscillations in strong-driving regime

Posted by in category: physics

Full coherent control of wave transport and localization is a long-sought goal in wave physics research, which encompasses many different areas from solid-state to matter-wave physics and photonics. One among the most important and fascinating coherent transport effects is Bloch oscillation (BO), which refers to the periodic oscillatory motion of electrons in solids under a direct current (DC)-driving electric field.

Aug 6, 2024

New method tracks how psychedelics affect neurons in minutes

Posted by in categories: biotech/medical, neuroscience

Researchers at the University of California, Davis have developed a rapid, noninvasive tool to track the neurons and biomolecules activated in the brain by psychedelic drugs. The protein-based tool, which is called Ca2+-activated Split-TurboID, or CaST, is described in research published in Nature Methods.

There has been mounting interest in the value of psychedelic-inspired compounds as treatments for brain disorders including depression, and . Psychedelic compounds like LSD, DMT and psilocybin promote the growth and strengthening of neurons and their connections in the brain’s prefrontal cortex. The new tool could help scientists unlock the benefits of psychedelic treatments for patients with brain disorders.

“It’s important to think about the that these psychedelics act upon,” said Christina Kim, an assistant professor of neurology at the UC Davis Center for Neuroscience and School of Medicine, and an affiliate of the UC Davis Institute for Psychedelics and Neurotherapeutics. “What are they? Once we know that, we can design different variants that target the same mechanism but with fewer side effects.”

Aug 6, 2024

Physicists develop new method to combine conventional internet with the quantum internet

Posted by in categories: internet, quantum physics

“To make the a reality, we need to transmit entangled photons via fiber optic networks,” says Prof. Dr. Michael Kues, Head of the Institute of Photonics and Board Member of the PhoenixD Cluster of Excellence at Leibniz University Hannover.

“We also want to continue using optical fibers for conventional data transmission. Our is an important step to combine the conventional internet with the quantum internet.”

In their experiment, the researchers demonstrated that the entanglement of photons is maintained even when they are sent together with a laser pulse. The research results were published in Science Advances.

Aug 6, 2024

New light source emits bright, entangled photons for quantum communication

Posted by in categories: computing, particle physics, quantum physics

Imagine the possibility of sending messages that are completely impervious to even the most powerful computers. This is the incredible promise of quantum communication, which harnesses the unique properties of light particles known as photons.

Aug 6, 2024

Ultrafast electron microscopy technique advances understanding of processes applicable to brain-like computing

Posted by in categories: robotics/AI, supercomputing

Today’s supercomputers consume vast amounts of energy, equivalent to the power usage of thousands of homes. In response, researchers are developing a more energy-efficient form of next-generation supercomputing that leverages artificial neural networks.

Aug 6, 2024

‘Laser view’ into the avocado: New method reveals cell interior

Posted by in category: futurism

Checking whether an avocado is hard or soft by looking at it? This would require recognizing how the plant cells behave behind the skin. The same applies to all other cells on our planet: Despite more than 100 years of intensive research, many of their properties remain hidden inside the cell.

Aug 6, 2024

First-Ever Sighting: Neutron Star’s Bizarre “Garden Sprinkler” Jet Captured

Posted by in category: cosmology

For the first time, astronomers have captured an image of a neutron star emitting a ‘garden sprinkler-like’ S-shaped jet in the binary system Circinus X-1, located over 30,000 light-years away.

This phenomenon, similar to precession observed in black holes, illustrates the jet’s direction change due to the gravitational pull from a disc of hot gas. The discovery was made using the MeerKAT radio telescope, and the findings provide insights into the dynamics of neutron stars and the mechanics of jet launching.

Continue reading “First-Ever Sighting: Neutron Star’s Bizarre ‘Garden Sprinkler’ Jet Captured” »

Aug 6, 2024

Unlocking Future Technologies With Magnetic Control of Rare Earth Elements

Posted by in categories: computing, materials

Laser pulses have been shown to adjust the magnetic properties of rare earths by affecting 4f electrons, opening avenues for quicker and more energy-efficient data storage devices.

The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, scientists have shown for the first time that laser pulses can influence 4f electrons — and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.

Breakthrough in Magnetic Properties Control.

Page 822 of 12,368First819820821822823824825826Last