Menu

Blog

Page 8191

Aug 22, 2019

NAD+ Restoration Therapy

Posted by in categories: biotech/medical, life extension

Super proud to announce the first in-depth analysis by our “Rejuvenation Now” initiative: a “Risk-Benefit Analysis of.


An in-depth analysis — more than 200 pre-clinical and clinical trials.

Aug 22, 2019

Why ‘blobology’ is the new hot topic in science

Posted by in categories: biotech/medical, science

Scientists have created an image which zooms in to a tiny section inside a cell. This is not a simulation, it is the real thing. As you run the video, you will see the section highlighted in green and then thin yellow tubes inside it. These are strands of the body’s clotting agent ready to be transported to the site of a wound.

Aug 22, 2019

Will China lead the world in AI by 2030?

Posted by in categories: ethics, robotics/AI

But observers warn that there are several factors that could stymie the nation’s plans, including a lack of contribution to the theories used to develop the tools underpinning the field, and a reticence by Chinese companies to invest in the research needed to make fundamental breakthroughs.


The country’s artificial-intelligence research is growing in quality, but the field still plays catch up to the United States in terms of high-impact papers, people and ethics.

Aug 22, 2019

Artificial Tree Can Suck Up As Much Air Pollution As A Small Forest

Posted by in category: sustainability

Mexico-based startup Biomitech has developed an artificial tree that it claims is capable of sucking up the equivalent amount of air pollution as 368 living trees. In doing so, it could be a game-changer for polluted cities lacking enough free space to plant a forest of real trees.

Aug 22, 2019

New Experiment Just Placed a Major Constraint on The Mysterious Force of Dark Energy

Posted by in categories: cosmology, physics

The Universe is expanding, and that expansion is speeding up over time. These two facts have been well established through observation, but we don’t know what’s causing that expansion. It seems to be some mysterious, unknown energy that acts like the opposite of gravity.

We call this hypothetical energy “dark energy”, and it’s been calculated to constitute around 72 percent of all the stuff that makes up the Universe. We don’t know what it actually is. But a new experiment has just allowed us to rule out one more thing that it isn’t: a new force.

“This experiment, connecting atomic physics and cosmology, has allowed us to rule out a wide class of models that have been proposed to explain the nature of dark energy, and will enable us to constrain many more dark energy models,’‘said physicist Ed Copeland of the University of Nottingham.

Aug 22, 2019

New Tech Puts NASA One Step Closer to Fueling Spacecraft in Space

Posted by in categories: robotics/AI, space

NASA just successfully demonstrated the first of three tools designed to refuel spacecraft in space, right outside of the International Space Station.

The space agency’s Robotic Refuelling Mission 3 was able to unstow a special adapter that can hold super-cold methane, oxygen or hydrogen, and insert it into a special coupler on a different fuel tank.

Future iterations of the system could one day allow us to gas up spacecraft with resources from distant worlds, such as liquid methane as fuel. And that’s a big deal, since future space explorations to far away destinations such as the Moon and Mars will rely on our ability to refuel after leaving Earth’s gravity.

Aug 22, 2019

Does our energy future hold electrification, biomass and hydrogen?

Posted by in categories: energy, physics

Physics World represents a key part of IOP Publishing’s mission to communicate world-class research and innovation to the widest possible audience. The website forms part of the Physics World portfolio, a collection of online, digital and print information services for the global scientific community.

Aug 22, 2019

‘Electron pairing’ found well above superconductor’s critical temperature

Posted by in categories: computing, mobile phones, particle physics

Physicists have found “electron pairing,” a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity happens.

Rice University’s Doug Natelson, co-corresponding author of a paper about the work in this week’s Nature, said the discovery of Cooper pairs of electrons “a bit above the critical temperature won’t be ‘crazy surprising’ to some people. The thing that’s more weird is that it looks like there are two different energy scales. There’s a higher energy scale where the pairs form, and there’s a lower energy scale where they all decide to join hands and act collectively and coherently, the behavior that actually brings about superconductivity.”

Continue reading “‘Electron pairing’ found well above superconductor’s critical temperature” »

Aug 22, 2019

Study identifies main culprit behind lithium metal battery failure

Posted by in category: nanotechnology

A research team led by the University of California San Diego has discovered the root cause of why lithium metal batteries fail—bits of lithium metal deposits break off from the surface of the anode during discharging and are trapped as “dead” or inactive lithium that the battery can no longer access.

The discovery, published Aug. 21 in Nature, challenges the conventional belief that fail because of the growth of a layer, called the solid interphase (SEI), between the anode and the electrolyte. The researchers made their discovery by developing a technique to measure the amounts of inactive lithium species on the anode—a first in the field of battery research—and studying their micro- and nanostructures.

The findings could pave the way for bringing rechargeable lithium batteries from the lab to the market.

Aug 22, 2019

Practical anonymous communication protocol developed for quantum networks

Posted by in categories: internet, quantum physics

The ability to securely transmit information over the internet is extremely important, but most of the time, eavesdroppers can still generally determine who the sender and receiver are. In some highly confidential situations, it is important that the sender’s and receiver’s identities remain anonymous.

Over the past couple of decades, researchers have been developing protocols for anonymously transmitting messages over classical networks, but similar protocols for are still in much earlier stages of development. The anonymity methods that have been proposed for quantum networks so far face challenges such as implementation difficulties or require that strong assumptions be made about the resources, making them impractical for use in the .

In a new paper, Anupama Unnikrishnan, Ian MacFarlane, Richard Yi, Eleni Diamanti, Damian Markham, and Iordanis Kerenidis, from the University of Oxford, MIT, Sorbonne University, the University of Paris and CNRS, have proposed the first practical for anonymous communication in quantum networks.