Toggle light / dark theme

:oooo circa 2009.


The portrait of Peter Higgs is on display at the University of Edinburgh’s School of Informatics. Photograph: Ken Currie.

It seems that Peter Higgs, despite his known aversion to publicity is turning up everywhere. Of course the potential discovery of the particle in the next few years by either/both of the Large Hadron Collider at CERN and the Tevatron at Fermilab is bringing a lot more attention to him, and a little to the other theorists, such as Guralnik, Hagen, Kibble, Brout, and Englert, who also developed the ideas behind a mass-giving spontaneously symmetry broken quantum field and its manifestation as a particle, now known as the Higgs boson. (Yep, that sounds scary because it gets technical.)

But Higgs the man seems to turn up in all kinds of places and lots of people have stories about where and how they met the man. I ran into him in at a function in a museum in the Hunterian Museum at the University of Glasgow over a decade ago, while Lauren, one of the symmetry interns, used to make him his sandwich in a cafe most days when she spent time in Glasgow. (Tell us your story of meeting Higgs in the comments below.)

WASHINGTON, D.C. — The U.S. Department of Energy today announced the winners of $32 million in funding for 15 projects as part of the Breakthroughs Enabling THermonuclear-fusion Energy (BETHE) program. These projects will work to develop timely, commercially viable fusion energy, with the goal to increase the number and performance levels of lower-cost fusion concepts.

“Fusion energy technology holds great potential to be a safe, clean, reliable energy source, but research and development of fusion technology is often constrained by prohibitive costs,” said Under Secretary of Energy Mark W. Menezes. “BETHE teams will build on recent progress in fusion research and the growing fusion community to lower costs and further foster viable commercial opportunities for the next generation of fusion technology.”

“These BETHE projects further advance ARPA-E’s commitment to the development of fusion energy as a cost-competitive, viable, energy generation source,” said ARPA-E Director Lane Genatowski. “Commercially viable fusion energy can improve our chances of meeting global energy demand and will further establish U.S. technological lead in this crucial area.”

A dipolar force field propulsion system having a alternating electric field source for producing electromotive lines of force which in a first direction and which vary at a selected and having an electric field of a predetermined magnitude, a source of an alternating magnetic field having magnetic lines of force which in a second direction which is at a predetermined angle to the first direction of the electromotive lines of force and which cross and intercept the electromotive line of force at a predetermined location defining a force field region and wherein the of the alternating magnetic field substantially equal to the of the alternating electric field and at a selected in phase angle therewith and wherein the magnetic field has a flux which when multiplied times the selected is less than a known characteristic field ionization limit; a source of neutral particles of matter having a selected dipole characteristic and having a known characteristic field ionization limit which is greater than the magnitude of the electric field and wherein the dipoles of the particles of matter are capable of being driven into cyclic rotation at the selected by the electric field to produce a reactive thrust, a vaporizing stage which vaporizes said particles of matter into a gaseous state at a selected temperature, and a transporting system for transporting the vaporized particles of matter into the force field defined by the crossing electromotive lines of force and the magnetic lines of force.