In this episode of Cosmology 101, we dive into the concept of an expanding universe. From the first moments of the Big Bang, our cosmos has been stretching in every direction. We explore what this expansion means for us, how we know it’s happening, and the fascinating implications of living in an ever-growing universe.
Join Katie Mack, Perimeter Institute’s Hawking Chair in Cosmology and Science Communication, on an incredible journey through the cosmos in our new series, Cosmology 101.
Chirality in extended 2D structures exhibits fundamental differences from molecular-level chirality. This Perspective discusses how local molecular chirality is transmitted and amplified to form distinctive global chirality within ultrathin, single-crystalline 2D materials; it also explores the future challenges and potential of this field.
A recent study by UC San Diego researchers brings fresh insight into the ever-evolving capabilities of AI. The authors looked at the degree to which several prominent AI models, GPT-4, GPT-3.5, and the classic ELIZA could convincingly mimic human conversation, an application of the so-called Turing test for identifying when a computer program has reached human-level intelligence.
The results were telling: In a five-minute text-based conversation, GPT-4 was mistakenly identified as human 54 percent of the time, contrasted with ELIZA’s 22 percent. These findings not only highlight the strides AI has made but also underscore the nuanced challenges of distinguishing human intelligence from algorithmic mimicry.
The important twist in the UC San Diego study is that it clearly identifies what constitutes true human-level intelligence. It isn’t mastery of advanced calculus or another challenging technical field. Instead, what stands out about the most advanced models is their social-emotional persuasiveness. For an AI to catch (or fool a human) it has to be able to effectively imitate the subtleties of human conversation. When judging whether their interlocutor was an AI or a human, participants tended to focus on whether responses were overly formal, contained excessively correct grammar, or repetitive sentence structures, or exhibited an unnatural tone. Participants flagged stilted or inconsistent personalities or senses of humor as non-human.
There’s a lot of chatter about AI supposedly passing the Turing Test. Don’t fall for it. Here’s the truth, including a close look at the Reverse Turing Test.
Follow Closer To Truth on Instagram for interesting articles, announcements, and giveaways: https://shorturl.at/p2IhM
Can biology be explained entirely in terms of chemistry and then physics? If so, that’s “reductionism.” Or are there “emergent” properties at higher levels of the hierarchy of life that cannot be explained by properties at lower or more basic levels?
Summary: New research in mice reveals that aging slows the brain’s ability to clear out harmful waste, contributing to neurological disorders like Alzheimer’s and Parkinson’s. Scientists have found that restoring function in the brain’s waste-clearing system, known as the glymphatic system, can reverse these age-related effects.
Using a clinically approved drug, researchers increased the efficiency of waste removal, offering a potential treatment strategy for age-related brain diseases.
Analog in-memory computing recent hardware implementations focused mainly on accelerating inference deployment. In this work, to improve the training process, the authors propose algorithms for supervised training of deep neural networks on analog in-memory AI accelerator hardware.
Read the paper published in our journal Symmetry:, which has been viewed many times, authored by Krzysztof Urbanowski (Uniwersytet Zielonogórski)
Estimates of the Higgs and top quark masses, mH≃125.10±0.14 [GeV] and mt≃172.76±0.30[GeV], based on the experimental result place the Standard Model in the region of the metastable vacuum. A consequence of the metastability of the Higgs vacuum is that it should induce the decay of the electroweak vacuum in the early Universe with catastrophic consequences. It may happen that certain universes were lucky enough to survive the time of canonical decay, that is the exponential decay, and live longer. This means that it is reasonable to analyze conditions allowing for that. We analyze the properties of an ensemble of universes with unstable vacua considered as an ensemble of unstable systems from the point of view of the quantum theory of unstable states. We found some symmetry relations for quantities characterizing the metastable state.