Toggle light / dark theme

As if this contagion movie we are living can not get any more strange. A University of Pittsburgh researcher who claimed to have been on the verge of a significant breakthrough in his research on the coronavirus was killed in what appears to me a murder-suicide…


While police are treating the death as a homicide, they have yet to find any evidence that it was related to his research.

Tesla has made even more battery improvements on its new ‘million-mile battery’ now with less cobalt, which could result in lower cost and even more energy density.

Last year, we were the first to report on Tesla’s battery research partner, Jeff Dahn and his team at Dalhousie University, unveiling the impressive results of tests on a new battery cell that could last over 1 million miles in an electric vehicle.

The new battery tested is a Li-ion battery cell with a next-generation “single crystal” NMC 532 cathode and a new advanced electrolyte, which they patented.

Just about everyone has had the experience of blinking while having their picture taken. The camera clicks, your eyes shut, and by the time they open again, the photo is ruined. A new ultrafast camera developed at Caltech, were it aimed at your lovely face, could also capture you looking like a dunce with your eyes shut, except instead of taking just one picture in the time it takes you to blink, it could take trillions of pictures.

The developed in the lab of Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering in the Andrew and Peggy Cherng Department of Medical Engineering, is capable of taking as many as 70 trillion frames per second. That is fast enough to see waves of light traveling and the fluorescent decay of molecules.

The , which Wang calls compressed ultrafast spectral photography (CUSP), is similar in some respects to previous fast cameras he has built, such as his phase-sensitive compressed ultrafast photography, or pCUP, device, which can take 1 trillion frames per second of transparent objects and phenomena.

Others believe it is the same Kim saying he only looks different because he has had plastic surgery.

And, to add to the mystery, the claims come as the North Korean leader missed yet another high-profile event.

He was noticeably absent as Russia awarded him a medal to mark the 75th anniversary of the victory over Nazi Germany.

O,.o!


Armed Army robot vehicles conducted reconnaissance, called for indirect fire and then, when directed by human decision-makers, attacked and destroyed enemy targets in a recent experiment designed to assess the technical maturity and readiness of autonomous ground drones.

“We had four robot vehicles conduct a tactical mission while humans were safe in defilade. We built four robots that are refurbished M113 tracked vehicles and we’ve taken two Bradleys — gutted them — and turned them into two control vehicles with all kinds of sensors on them,” Jeff Langhout, Director, Ground Vehicle Systems Center, told reporters in October at the Association of the United States Army Annual Symposium, Washington, D.C.

Langhout explained that the robots engaged in “direct fire” missions when directed by human decision-makers, per existing doctrine requiring a human to be “in the loop” when it comes to using lethal force for attack.

The military has been talking about incorporating electric vehicles in their fleet and with the Tesla Cybertruck being described as an “armored personnel carrier from the future”, a rendering artist decided to explore what a Cybertruck would look like as an electric Joint Light Tactical Vehicle.

As we reported last week, the military is developing a plan to use EVs for remote missions and even cited Tesla as an example that larger EVs are viable.

With Tesla CEO Elon Musk describing the Cybertruck as ‘an armored personnel carrier from the future’, several people suggested that the military could end up using the Cybertruck as a platform to build electric military vehicles.

Circa 2015


Researchers at the University of California, Riverside Bourns College of Engineering and the Russian Academy of Sciences have successfully demonstrated pattern recognition using a magnonic holographic memory device, a development that could greatly improve speech and image recognition hardware.

Pattern recognition focuses on finding patterns and regularities in data. The uniqueness of the demonstrated work is that the input patterns are encoded into the phases of the input spin waves.

Spin waves are collective oscillations of spins in magnetic materials. Spin wave devices are advantageous over their optical counterparts because they are more scalable due to a shorter wavelength. Also, spin wave devices are compatible with conventional electronic devices and can be integrated within a chip.

Two decades ago, an experiment at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory pinpointed a mysterious mismatch between established particle physics theory and actual lab measurements. When researchers gauged the behavior of a subatomic particle called the muon, the results did not agree with theoretical calculations, posing a potential challenge to the Standard Model—our current understanding of how the universe works.

Ever since then, scientists around the world have been trying to verify this discrepancy and determine its significance. The answer could either uphold the Standard Model, which defines all of the known subatomic particles and how they interact, or introduce the possibility of an entirely undiscovered physics. A multi-institutional research team (including Brookhaven, Columbia University, and the universities of Connecticut, Nagoya and Regensburg, RIKEN) have used Argonne National Laboratory’s Mira supercomputer to help narrow down the possible explanations for the discrepancy, delivering a newly precise theoretical calculation that refines one piece of this very complex puzzle. The work, funded in part by the DOE’s Office of Science through its Office of High Energy Physics and Advanced Scientific Computing Research programs, has been published in the journal Physical Review Letters.

A muon is a heavier version of the electron and has the same electric charge. The measurement in question is of the muon’s magnetic moment, which defines how the particle wobbles when it interacts with an external magnetic field. The earlier Brookhaven experiment, known as Muon g-2, examined muons as they interacted with an electromagnet storage ring 50 feet in diameter. The experimental results diverged from the value predicted by theory by an extremely small amount measured in parts per million, but in the realm of the Standard Model, such a difference is big enough to be notable.