Toggle light / dark theme

Multiple sclerosis (MS) is known as “the disease with a thousand faces” because symptoms and progression can vary dramatically from patient to patient. But every MS patient has one thing in common: Cells of their body’s own immune system migrate to the brain, where they destroy the myelin sheath—the protective outer layer of the nerve fibers. As a result, an electrical short circuit occurs, preventing the nerve signals from being transmitted properly.

Many MS medications impair immune memory

Researchers don’t yet know exactly which are involved in stripping away the myelin sheath. Autoreactive T and B , which wrongly identify the myelin sheath as a foreign body, travel to the brain and initiate the disease. “Up until now, MS drugs have essentially targeted these T and B cells, both of which are part of the acquired ,” says Dr. Alexander Mildner, a scientist at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and the senior author of the paper now published in Nature Immunology.

New psychology study shows that some people have increased brain sensitivity for “aha moments”.

The researchers scanned brains of participants and noticed orgasm-like signals during insights.

The scientists think this evolutionary adaptation drives creation of science and culture.

If you found this article interesting or informative and you’d like to share it you can do so from the following link: https://m.facebook.com/story.php?story_fbid=569991543629194&id=383136302314720


Only 10 years ago, scientists working on what they hoped would open a new frontier of neuromorphic computing could only dream of a device using miniature tools called memristors that would function/operate like real brain synapses.

But now a team at the University of Massachusetts Amherst has discovered, while on their way to better understanding protein , how to use these biological, electricity conducting filaments to make a neuromorphic memristor, or “memory transistor,” device. It runs extremely efficiently on very low power, as brains do, to carry signals between neurons. Details are in Nature Communications.

As first author Tianda Fu, a Ph.D. candidate in electrical and , explains, one of the biggest hurdles to neuromorphic computing, and one that made it seem unreachable, is that most conventional computers operate at over 1 volt, while the brain sends signals called action potentials between neurons at around 80 millivolts—many times lower. Today, a decade after early experiments, memristor voltage has been achieved in the range similar to conventional computer, but getting below that seemed improbable, he adds.

O,.o circa 2007.


Theoretical physicists at the University of St. Andrews have created ‘incredible levitation effects’ by engineering the force of nature which normally causes objects to stick together by quantum force. By reversing this phenomenon, known as ‘Casimir force’, the scientists hope to solve the problem of tiny objects sticking together in existing novel nanomachines.

Professor Ulf Leonhardt and Dr Thomas Philbin of the University’s School of Physics & Astronomy believe that they can engineer the Casimir force of quantum physics to cause an object to repel rather than attract another in a vacuum.

Casimir force (discovered in 1948 and first measured in 1997) can be demonstrated in a gecko’s ability to stick to a surface with just one toe. However, it can cause practical problems in nanotechnology, and ways of preventing tiny objects from sticking to each other is the source of much interest.

:oooo.


Doctors and researchers are just beginning to document and understand the effects of heart disease in complicating and endangering recovery from the COVID-19 virus, as well as the potential impact of COVID-19 on the heart. In a new Loyola Medicine video, “Heart Disease and COVID-19,” cardiologist Asim Babar, MD, recommends that individuals with heart disease take especially good care of their health and heart during this pandemic.

The research team, which also included Rodriguez’w PhD students Zou Geng and Kevin Peters, increased and decreased the distances between the mirrors at different speeds and noted how light transmitted through the cavity was affected. They saw that the direction in which the mirrors moved influenced how much light got through the cavity, finding that “the transmission of light through the cavity is non-linear.” This behavior of light, called hysteresis, is present in the phase transitions of boiling water or magnetic materials.

The scientists also increased the speed with which the oil-filled cavity opened and closed, observing that under such conditions the hysteresis was not always present. This allowed them to extrapolate a universal law. “The equations that describe how light behaves in our oil-filled cavity are similar to those describing collections of atoms, superconductors and even high energy physics,” elaborated Rodriguez, adding: “Therefore, the universal behavior we discovered is likely to be observed in such systems as well.”

#Hackers are seeking to exploit the roll-out of government financial relief plans to fill their own pockets at the expense of businesses and affected workers, Israeli cyber researchers have revealed.


Hackers are exploiting the rollout of governmental financial relief to fill their pockets at the expense of businesses and affected workers, according to Israeli cyber researchers.

In recent weeks, governments have sought to ease cash-flow shortages and avoid a recession with ambitious stimulus packages and grants to households, including a massive $2 trillion economic package in the United States.

According to researchers at Israeli cybersecurity giant Check Point, a major increase in malicious and suspicious domains related to relief packages has been registered in recent weeks. The hackers aim to scam individuals into providing personal information, thereby stealing money or committing fraud.