Toggle light / dark theme

A study appearing in Journal of Bioethical Inquiry explored the legal and ethical challenges expected to arise in human brain organoid research.

Human brain organoids are three-dimensional neural tissues derived from that can mimic some aspects of the human brain. Their use holds incredible promise for medical advancements, but this also raises complex ethical and legal questions that need careful consideration.

Seeking to examine the various legal challenges that might arise in the context of human brain research and its applications, the team of researchers, which included a legal scholar, identified and outlined potential legal issues.

The future of medicine lies in synthetic biology! In this video, you’ll learn how synthetic biology is used in healthcare and why it can help develop cancer treatments and much more.

Are you interested in furthering the field of biology or medicine? Visit uvu.edu to carve your path.

Instagram: / utah.valley.university.

Facebook: / utahvalleyuniversity.

Quantum computers have the potential to revolutionize our understanding of the world around us—and teach us how to manipulate it. The technology could enable the rapid design and development of life-saving drugs, simulate superconducting materials that would revolutionize technology and clean energy, and even offer insight into the underlying structure of space and time. Like the qubits that sit in superposition at the heart of quantum computers, the possibilities seem endless.

“Right now, you will find people who see quantum computing as a panacea,” says Susanne Yelin, a professor of physics in residence at Harvard’s Faculty of Arts and Sciences. “I am not one of them. But quantum computing could help us better understand fundamental physics, such as problems in condensed matter or particle physics. It could also advance quantum chemistry [which uses quantum physics to understand chemical systems]—and with it, better development of drugs and materials.”

At the Harvard Kenneth C. Griffin Graduate School of Arts and Sciences (Harvard Griffin GSAS), PhD physics students Maddie Cain, on whose dissertation committee Yelin sits, and Dolev Bluvstein are working to make the promise of quantum computing a reality. In the laboratory of Professor Mikhail Lukin, Cain and Bluvstein push the boundaries of science, advancing the prospects of transformative applications that could reshape our world.

In rainbow trout, classification of ionocytes based on the expressed transporters is still in progress. The Nhe3-positive ionocytes expressing basolateral Nka and Nkcc1 and apical Nhe3b have been found in both freshwater-and seawater-acclimated rainbow trout. Colocalization of an Rh glycoprotein (Rhcg1, ammonium transporter) and Nhe3b at the apical membrane was also observed, suggesting ammonia-dependent Na+ uptake by Nhe3-positive ionocytes (Hiroi and McCormick 2012). The Nhe3-negative ionocytes, which also lack Nkcc1, are observed mainly in freshwater (Katoh et al. 2008; Hiroi and McCormick 2012). Ncc2, the apical Cl pathway in tilapia type-II ionocytes, is thought to be absent in the gill of salmonids (Hiroi and McCormick 2012). The Nhe3-positive ionocytes showed basolateral Nka and Nkcc1 both in freshwater and seawater, suggesting that Nhe3-positive ionocytes are analogous to tilapia types-III and-IV and could be equipped with apical Cftr in seawater (Hiroi and McCormick 2012; Takei et al. 2014). However, localization of Cftr proteins by immunohistochemistry has not been successful in salmonids even with homologous antibodies (Takei et al. 2014). The mRNA of slc26a6 has been reported to be highly expressed in the gills of freshwater-acclimated rainbow trout (Boyle et al. 2015; Leguen et al. 2015) and it is very likely that this transporter is responsible for the uptake of Cl in freshwater, but detailed localization of this protein in the gills has not been elucidated. In short, the molecules responsible for the Cl transport across the apical membrane have not been identified in both freshwater-and seawater-acclimated rainbow trout.

Salmonids possess two cftr genes, cftr1 and cftr2 (Chen et al. 2001), and it has been reported that the expression level of both genes increases in the gill of chum salmon Oncorhynchus keta after the transfer to seawater during the juvenile stage (Wong et al. 2019). Expression of cftr1 in the gills increased also in rainbow trout after seawater transfer (Gerber et al. 2018). On the other hand, dietary salt loading reduced cftr2 expression in the gill of rainbow trout in freshwater (Kolosov and Kelly 2016). At this time, it is not clear which of these two molecules is mainly responsible for hypo-osmoregulatory Cl secretion in the gills of salmonids.

The objective of the present study is to examine molecules responsible for the active transport of Cl in gill ionocytes of rainbow trout. To achieve this goal, we conducted tissue distribution analyses on the expression of slc26a6, cftr1, and cftr2 in rainbow trout acclimated to freshwater or seawater. Time-course changes in the expression of these genes were also examined during seawater transfer. We localized these proteins in the gill filaments of rainbow trout acclimated to freshwater or seawater by whole-mount immunohistochemistry.

Further, “the necessity to secure private ideas, plans, and brain data from unpermitted viewing is accorded to Dr. Anita S Jwa by the phrase,” she argues. Besides that, the ethical implications in the fields of informed consent, coercion, and fairness with respect to the common attributes of the BCIs must be critically considered. For example, consider a scenario where a BCI is used to control a prosthetic limb. Without proper privacy measures, “unauthorised access to the BCI could lead to manipulation of the prosthetic limb,” posing risks to the user’s safety and autonomy.

Overcoming these difficulties requires the joint efforts of all the stakeholders, such as researchers, policymakers, and industry leaders. In the same way, we have to critically assess the technical, ethical, and accessibility issues in BCI. We may then be able to capture the potential of these BCIs and ultimately improve human lives.

In this instance, just imagine that we are submerging into the future of BCIs, and to my surprise, it feels like living in a movie where sci-fi is a reality! BCIs are going to be able to do all kinds of really advanced things very soon. People are going to think that they are very cool. We are entering an entirely new realm of brainy gadgets that are becoming smaller, sleeker, and oh-so-wearable. It is now all gear change; the future of BCI is almost as organic as slipping on your dream pair of sunglasses.

One of the most distinctive features of the Transhumanist project is its unflagging confidence that the advances of science and technology will usher humanity into a marvellous post-human future.

No one has expressed this more sharply than Ray Kurzweil, the futurist and engineering director at Google. In his book, The Singularity is Near (2005), Kurzweil famously writes:

… A future period during which the pace of technological change will be so rapid, its impact so deep, that human life will be irreversibly transformed. Although neither utopian or dystopian, this epoch will transform the concepts that we rely on to give meaning to our lives, from our business models to the cycle of human life, including death itself.