Jan 11, 2020
People Are Finding Images Of Their Deceased Loved Ones On Google Maps
Posted by Genevieve Klien in category: futurism
“It’s kind of like he’s still there, still waving, and it just makes me feel like he’s just still around.”
“It’s kind of like he’s still there, still waving, and it just makes me feel like he’s just still around.”
A team of researchers affiliated with several institutions in France and one in the U.S. has found that objects of different mass dropped in space fall at a rate within two-trillionths of a percent of each other. In their paper published in the journal Physical Review Letters, the group describes their satellite-based physics study and what they learned from it.
Most everyone has heard the story of Galileo dropping two different sized cannon balls from the Tower of Pisa in the 17th century to demonstrate his theory that in the absence of air resistance, two objects will fall at the same rate. Einstein later refined the theory and added it to his Theory of General Relativity. Since that time, many people have tested the theory, and it has always been confirmed. Still, some physicists believe that there are bound to be exceptions to the theory because of the disconnect between general relativity and quantum mechanics. In this new effort, the team in France devised an experiment to measure two objects dropping together for two years—specifically, two chunks of metal in a satellite—to see if they could spot an exception.
The two chunks of a platinum-rhodium alloy and a mass of titanium-aluminum-vanadium alloy were installed in a device the team called the Twin-Space Accelerometer for Gravity Experiment (T-SAGE), which was on board a satellite with the acronym MICROSCOPE. The satellite was launched into space aboard a Soyuz rocket from the Guiana Space Centre ELS.
An international team of cancer researchers has developed a new type of copper-based nanoparticle that can kill tumor cells in mice. While the technology showed effectiveness on its own, by combining it with immunotherapy the scientists say it produced long-lasting effects, quickly killing off any cancer cells that dared to return.
The therapy centers on new knowledge around tumors’ aversion to certain types of nanoparticles. The research team made up of scientists from KU Leuven, the University of Bremen, the Leibniz Institute of Materials Engineering, and the University of Ioannina, discovered that tumor cells were particularly sensitive to nanoparticles made from copper and oxygen.
Once these copper oxide nanoparticles enter a living organism they dissolve and become toxic, killing off cancer cells that happen to be in the area. Key to the new nanoparticle design was the addition of iron oxide, which the researchers say enables it to kill off cancer cells while leaving healthy cells intact.
A long-sought-after class of “superdiamond” carbon-based materials with tunable mechanical and electronic properties was predicted and synthesized by Carnegie’s Li Zhu and Timothy Strobel. Their work is published by Science Advances.
Carbon is the fourth-most–abundant element in the universe and is fundamental to life as we know it. It is unrivaled in its ability to form stable structures, both alone and with other elements.
A material’s properties are determined by how its atoms are bonded and the structural arrangements that these bonds create. For carbon-based materials, the type of bonding makes the difference between the hardness of diamond, which has three-dimensional “sp3” bonds, and the softness of graphite, which has two-dimensional “sp2” bonds, for example.
This smart mirror lets you virtually try on clothes, so you can live out your greatest hi-tech dreams.
Threats of cyber attacks on North America’s electric network systems are growing, industrial cybersecurity firm Dragos said in a new report this week.
This year, the firm has identified two groups, Magnallium and Xenotime, which are increasingly probing to compromise electric assets in North America, expanding their targeting from the oil and gas sector to include electric assets.
“This underscores the trend in threats expanding from single-vertical ICS operations to multi-vertical ICS operations we observe from adversaries targeting industrial entities,” Dragos said in its report.
An innovation may lead to lifelike evolving machines.
When David Poses As Goliath
Stellar black holes form when massive stars end their life in a dramatic collapse. Observations have shown that stellar black holes typically have masses of about ten times that of the Sun, in accordance with the theory of stellar evolution. Recently, a Chinese team of astronomers claimed to have discovered a black hole as massive as 70 solar masses, which, if confirmed, would severely challenge the current view of stellar evolution. The publication immediately triggered theoretical investigations as well as additional observations by other astrophysicists.
Among those to take a closer look at the object was a team of astronomers from the Universities of Erlangen-Nürnberg and Potsdam. They discovered that it may not necessarily be a black hole at all, but possibly a massive neutron star or even an ‘ordinary’ star. Their results have now been published as a highlight-paper in the renowned journal Astronomy & Astrophysics.
Exclusive: The Irish food delivery company announces a partnership with global network company Cubic at CES.