Toggle light / dark theme

An ischemic stroke is a type of stroke that occurs when a blood clot in an artery, also known as thrombus, or the progressive narrowing of arteries, blocks the blood and oxygen flowing to the brain. This process can cause both temporary and permanent brain damage, for instance, leading to partial paralysis, cognitive impairments and other debilitating impairments.

Statistics suggest that older age increases the risk of experiencing ischemic strokes. While neuroscience studies have shed light on many of the physiological processes underpinning strokes, the immune responses following these events and promoting recovery remain poorly understood.

Researchers at the Institut Blood and Brain @ Caen-Normandie (BB@C), University of Edinburgh and other institutes in Europe carried out a study exploring how central nervous system (CNS)-associated macrophages (CAMs), immune cells residing at the CNS interfaces, contribute to post-stroke immune responses.

The Longevity Biotech Fellowship is a non-profit community for people to come together to build, join, or invest in revolutionary longevity biotechnology projects. The Fellowship was founded in 2022 by Nathan Cheng, Mark Hamalainen, and Jun Axup as part of LessDeath Inc— an IRS-approved 501©3 non-profit based in California.

Check out my quantum physics course on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

The Fermi Paradox is an estimate that says: Given all we currently know about the universe, we should have found extraterrestrial life already. So why haven’t we? In a paper that just appeared two weeks ago, a physicist has now put forward the idea that aliens use quantum communication. How does that solve the Fermi Paradox? I’ve had a look.

Anduril Industries is planning to construct a new factory to scale weapons production for the United States defense base. Anduril Industries Co-Founder and Executive Chairman Trae Stephens joins Market Domination Overtime to discuss this initiative.

Stephens explains that the legacy defense industry has traditionally focused on \.

Interest in Earth-like planets orbiting within the habitable zone of their host stars has surged, driven by the quest to discover life beyond our solar system. But the habitability of such planets, known as exoplanets, is influenced by more than just their distance from the star.

A new study by Rice University’s David Alexander and Anthony Atkinson extends the definition of a habitable zone for planets to include their star’s magnetic field. This factor, well studied in our solar system, can have significant implications for life on other planets, according to the research published in The Astrophysical Journal on July 9.

The presence and strength of a planet’s magnetic field and its interaction with the host star’s magnetic field are pivotal factors in a planet’s ability to support life. An exoplanet needs a strong magnetic field to protect it from stellar activity, and it must orbit far enough from its star to avoid a direct and potentially catastrophic magnetic connection.