Toggle light / dark theme

In the summer of 2010, I had the opportunity to be part of the team that designed and built the first passive freezer that we’d ever heard of. The idea was simple, we create a well-insulated room and stack several thousand 2-liter bottles full of salt water along the walls. In the winter, we open hatches in the ceiling and everything freezes. At the end of the winter, we close the hatches and it stays at about 25°F for the whole year.

The team of students, led by physics teacher Tom Tailer ran some calculations to make sure the physics added up and calculated that we needed about 3000 bottles and about 18 inches of foam insulation on the walls and ceiling for good performance. We built the structure and insulated it using waste styrofoam, ground-up using a modified leaf shredder.

Scaling Up

There’s a long way to go between a proof-of-concept prototype and installing an engine in a real plane. But the prototype was able to launch a one-kilogram steel ball 24 millimeters into the air. That’s the same thrust, proportional to scale, as a conventional jet engine.

“Our results demonstrated that such a jet engine based on microwave air plasma can be a potentially viable alternative to the conventional fossil fuel jet engine,” lead researcher and Wuhan University engineer Jau Tang said in a press release.

Spinels are oxides with chemical formulas of the type AB2O4, where A is a divalent metal cation (positive ion), B is a trivalent metal cation, and O is oxygen. Spinels are valued for their beauty, which derives from the molecules’ spatial configurations, but spinels in which the trivalent cation B consists of the element chrome (Cr) are interesting for a reason that has nothing to do with aesthetics: They have magnetic properties with an abundance of potential technological applications, including gas sensors, drug carriers, data storage media, and components of telecommunications systems.

A study by Brazilian and Indian researchers investigated a peculiar kind of spinel: zinc-doped manganese chromite. Nanoparticles of this material, described by the formula Mn0.5 Zn0.5 Cr2O4 [where manganese (Mn) and zinc (Zn) compose the A-site divalent cation], were synthesized in the laboratory and characterized by calculations based on density functional theory (DFT), a method derived from that is used in solid-state physics and chemistry to resolve complex crystal structures.

The material’s structural, electronic, vibrational and were determined by X-ray diffraction, neutron diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. A report of the study has been published in the Journal of Magnetism and Magnetic Materials with the title “Structural, electronic, vibrational and magnetic properties of Zn2+ substituted MnCr2O4 nanoparticles.”

Circa 2018


We propose that fungi Basidiomycetes can be used as computing devices: information is represented by spikes of electrical activity, a computation is implemented in a mycelium network and an interface is realized via fruit bodies. In a series of scoping experiments, we demonstrate that electrical activity recorded on fruits might act as a reliable indicator of the fungi’s response to thermal and chemical stimulation. A stimulation of a fruit is reflected in changes of electrical activity of other fruits of a cluster, i.e. there is distant information transfer between fungal fruit bodies. In an automaton model of a fungal computer, we show how to implement computation with fungi and demonstrate that a structure of logical functions computed is determined by mycelium geometry.

The fungi are the largest, widely distributed and oldest group of living organisms [1]. The smallest fungi are microscopic single cells. The largest mycelium belongs to Armillaria bulbosa, which occupies 15 hectares and weights 10 tons [2], and the largest fruit body belongs to Fomitiporia ellipsoidea, which at 20 years old is 11 m long, 80 cm wide, 5 cm thick and has an estimated weight of nearly half-a-ton [3]. During the last decade, we produced nearly 40 prototypes of sensing and computing devices from the slime mould Physarum polycephalum [4], including the shortest path finders, computational geometry processors, hybrid electronic devices, see the compilation of the latest results in [5].

TRANSCRIPT AND MP3: www.corbettreport.com/gates

Who is Bill Gates? A software developer? A businessman? A philanthropist? A global health expert? This question, once merely academic, is becoming a very real question for those who are beginning to realize that Gates’ unimaginable wealth has been used to gain control over every corner of the fields of public health, medical research and vaccine development. And now that we are presented with the very problem that Gates has been talking about for years, we will soon find that this software developer with no medical training is going to leverage that wealth into control over the fates of billions of people.

Australian scientists work with medicine that can kill COVID-19 in 48 hours59.


“En tiempos en los que estamos teniendo una pandemia global y no hay un tratamiento aprobado, si tuviéramos un compuesto que ya estuviera disponible en todo el mundo, eso podría ayudar a la gente antes. Siendo realistas –consideró la investigadora-, pasará un tiempo antes de que una vacuna esté ampliamente disponible”.

Aunque no se conoce el mecanismo por el que la ivermectina actúa en el coronavirus, teniendo en cuenta su acción en otros virus, “es probable que funcione para detener la capacidad del virus de ‘amortiguar’ la capacidad de las células anfitrionas para eliminarlo”, dijo Wagstaff.

El uso de esta medicina para combatir la COVID-19 dependería, según la científica, de los resultados de más pruebas preclínicas y, en última instancia, de ensayos clínicos, con una financiación que se necesita urgentemente para seguir avanzando en el trabajo.

Since Robert Hooke’s first description of a cell in Micrographia 350 years ago, microscopy has played an important role in understanding the rules of life.

However, the smallest resolvable feature, the resolution, is restricted by the wave nature of light. This century-old barrier has restricted understanding of cellular functions, interactions and dynamics, particularly at the sub-micron to nanometer scale.

Super-resolution fluorescence microscopy overcomes this fundamental limit, offering up to tenfold improvement in resolution, and allows scientists to visualize the inner workings of cells and biomolecules at unprecedented spatial resolution.

The SpaceX Crew Dragon trunk was secured to the spacecraft on Thursday, April 30, at Cape Canaveral Air Force Station, Florida, in preparation for launch of NASAfs SpaceX Demo-2 mission.The SpaceX Crew Dragon trunk was secured to the spacecraft on Thursday, April 30, at Cape Canaveral Air Force Station, Florida, in preparation for launch of NASAfs SpaceX Demo-2 mission.

NASA astronauts Robert Behnken and Douglas Hurley will fly to the International Space Station aboard the Crew Dragon spacecraft launched atop a Falcon 9 rocket. Liftoff from Kennedy Space Center’s Launch Complex 39A is slated for May 27 at 4:32 p.m. EDT.

Demo-2 will serve as an end-to-end test of SpaceX’s crew transportation system, paving the way for NASA to certify the system for regular crewed flights to the orbiting laboratory as a part of NASA’s Commercial Crew Program. NASA’s SpaceX Demo-2 mission will be the first crewed flight to launch from U.S. soil since the conclusion of the Space Shuttle Program in 2011.