Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Scientists unlock key manufacturing challenge for next-generation optical chips

Researchers at the University of Strathclyde have developed a new method for assembling ultra-small, light-controlling devices, paving the way for scalable manufacturing of advanced optical systems used in quantum technologies, telecommunications and sensing.

The study, published in Nature Communications, centers on photonic crystal cavities (PhCCs), micron-scale structures that trap and manipulate light with extraordinary precision. These are essential components for high-performance technologies ranging from quantum computing to photonic artificial intelligence.

Until now, the creation of large arrays of PhCCs has been severely limited by the tiny variations introduced during fabrication. Even nanometer-scale imperfections can drastically shift each device’s optical properties, making it impossible to build arrays of identical units directly on-chip.

Microrobots shaped and steered by metal patches could aid drug delivery and pollution cleanup

Researchers at the University of Colorado Boulder have created a new way to build and control tiny particles that can move and work like microscopic robots, offering a powerful tool with applications in biomedical and environmental research.

The study, published in Nature Communications, describes a new method of fabrication that combines high-precision 3D printing, called two-photon lithography, with a microstenciling technique. The team prints both the particle and its stencil together, then deposits a thin layer of metal—such as gold, platinum or cobalt—through the stencil’s openings. When the stencil is removed, a metal patch remains on the particle.

The particles, invisible to the naked eye, can be made in almost any shape and patterned with surface patches as small as 0.2 microns—more than 500 times thinner than a human hair. The metal patches guide how the particles move when exposed to electric or magnetic fields, or chemical gradients.

Wood-based material can improve safety and lifespan of lithium-ion batteries

For consumers worried about the risks associated with using lithium-ion batteries—which are used in everything from phones to laptops to electric vehicles—Michigan State University has discovered that a natural material found in wood can improve battery safety while also improving the battery’s life.

Chengcheng Fang, assistant professor in the College of Engineering, and Mojgan Nejad, an associate professor in the College of Agriculture and Natural Resources, collaborated to engineer , a natural ingredient of wood that provides support and rigidity, into a thin film separator that can be used inside to prevent short circuits that can cause a fire.

“We wanted to build a better battery,” said Fang. “But we also wanted it to be safe, efficient and sustainable.”

Thermodiffusion method offers greener extraction of valuable materials from brine deposits

A simple and cost-effective method developed by scientists at The Australian National University (ANU) could make the process of extracting valuable resources from brine deposits more environmentally friendly. The research is published in Nature Water.

Brine mining is important for lithium extraction—a critical component for battery manufacturing—with a significant portion of global lithium production coming from continental brine deposits.

In 2024, ANU researchers developed the world’s first thermal desalination method, where water remains in the throughout the entire process. They have now successfully applied this method to brine concentration.

Chain of magnets transports proton beams over range of energies in test of future cancer treatment

While radiation treatments designed to kill cancer cells have come a long way, scientists and doctors are always exploring new ways to zap tumors more effectively. Recent tests at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory show that a small array of magnets designed as an offshoot of the Lab’s nuclear physics research could quite literally provide a path for such future cancer treatments.

The tests revealed that an arc of meticulously designed permanent magnets can transport beams of cancer-killing protons over a broad range of energies, from 50 to 250 million electron volts (MeV). “That’s the highest energy ever for this sort of beamline,” said Brookhaven Lab physicist Stephen Brooks, designer of the fixed-field magnets, and it’s an energy range that could enable more effective cancer treatment.

Specifically, the project is a step toward a possible future accelerator built using this technology, where physicians could rapidly switch among energies to deliver very fast lethal proton doses throughout a tumor’s depth.

Quantum battery device lasts much longer than previous demonstrations

Researchers from RMIT University and CSIRO, Australia’s national science agency, have unveiled a method to significantly extend the lifetime of quantum batteries—1,000 times longer than previous demonstrations.

A quantum battery is a theoretical concept that emerged from research in and technology.

Unlike traditional batteries, which rely on , quantum batteries use quantum superposition and interactions between electrons and light to achieve faster charging times and potentially enhanced storage capacity.

Parker Solar Probe uncovers direct evidence of the sun’s ‘helicity barrier’

New research utilizing data from NASA’s Parker Solar Probe has provided the first direct evidence of a phenomenon known as the “helicity barrier” in the solar wind. This discovery, published in Physical Review X by Queen Mary University of London researchers, offers a significant step toward understanding two long-standing mysteries: how the sun’s atmosphere is heated to millions of degrees and how the supersonic solar wind is generated.

The solar atmosphere, or corona, is far hotter than the sun’s surface, a paradox that has puzzled scientists for decades. Furthermore, the constant outflow of plasma and magnetic fields from the sun, known as the solar wind, is accelerated to incredible speeds.

Turbulent —the process by which is converted into heat—is believed to play a crucial role in both these phenomena. However, in the near-sun environment, where plasma is largely collisionless, the exact mechanisms of this dissipation have remained elusive.

Optical tweezer sectioning microscopy enables 3D imaging of floating live cells

Three-dimensional (3D) imaging is essential for investigating cellular structure and dynamics. Traditional optical methods rely on adhesive or mechanical forces to hold and scan cells, which limit their applicability to suspended cells and may induce stress responses. Developing a non-contact, all-optical 3D imaging technique for live suspended cells remains a major challenge in advancing in situ biological research.

In a study published in Science Advances, Prof. Yao Baoli from the Xi’an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences and Prof. Olivier J. F. Martin, from the Swiss Federal Institute of Technology, Lausanne, developed the optical tweezer sectioning (OTSM), enabling all-optical 3D imaging of suspended , which offers a powerful new tool for live-cell imaging, dynamic biological studies and multicellular assembly.

Researchers developed OTSM by integrating holographic optical tweezers (HOTs) with structured illumination microscopy (SIM).

Elusive romance of top-quark pairs observed at Large Hadron Collider

An unforeseen feature in proton-proton collisions previously observed by the CMS experiment at CERN’s Large Hadron Collider (LHC) has now been confirmed by its sister experiment ATLAS.

The result, reported yesterday at the European Physical Society’s High-Energy Physics conference in Marseille, suggests that —the heaviest and shortest-lived of all the elementary particles—can momentarily pair up with their antimatter counterparts to produce a “quasi-bound-state” called toponium. Further input based on complex theoretical calculations of the strong nuclear force—called (QCD)—will enable physicists to understand the true nature of this elusive dance.

High-energy collisions between protons at the LHC routinely produce top quark–antiquark pairs. Measuring the probability, or cross section, of this process is both an important test of the Standard Model of particle physics and a powerful way to search for the existence of new particles that are not described by the theory.

New quantum record: Transmon qubit coherence reaches millisecond threshold

On July 8, 2025, physicists from Aalto University in Finland published a transmon qubit coherence measurement in Nature Communications that dramatically surpasses previous scientifically published records. The millisecond coherence measurement marks a quantum leap in computational technology, with the previous maximum echo coherence measurements approaching 0.6 milliseconds.

Longer coherence allows for an extended window of time in which quantum computers can execute error-free operations, enabling more complex quantum computations and more quantum logic operations before errors occur. Not only does this allow for more calculations with noisy quantum computers, but it also decreases the resources needed for , which is a path to noiseless quantum computing.

“We have just measured an echo time for a transmon qubit that landed at a millisecond at maximum with a median of half a millisecond,” says Mikko Tuokkola, the Ph.D. student who conducted and analyzed the measurements. The median reading is particularly significant, as it also surpasses current recorded readings.