Toggle light / dark theme

Physicists have performed a groundbreaking simulation they say sheds new light on an elusive phenomenon that could determine the ultimate fate of the Universe.

Pioneering research in quantum field theory around 50 years ago proposed that the universe may be trapped in a false vacuum — meaning it appears stable but in fact could be on the verge of transitioning to an even more stable, true vacuum state. While this process could trigger a catastrophic change in the Universe’s structure, experts agree that predicting the timeline is challenging, but it is likely to occur over an astronomically long period, potentially spanning millions of years.

In an international collaboration between three research institutions, the team report gaining valuable insights into false vacuum decay — a process linked to the origins of the cosmos and the behaviour of particles at the smallest scales. The collaboration was led by Professor Zlatko Papic, from the University of Leeds, and Dr Jaka Vodeb, from Forschungszentrum Jülich, Germany.

DGIST research teams have developed a self-powered sensor that uses motion and pressure to generate electricity and light simultaneously. This battery-free technology is expected to be used in various real-life applications, such as disaster rescue, sports, and wearable devices.

Triboelectric nanogenerators (TENG) and mechanoluminescence (ML) have attracted attention as green energy technologies that can generate electricity and light, respectively, without external power. However, researchers in previous studies mainly focused on the two technologies separately or simply combined them. Moreover, the power output stability of TENG and the insufficient luminous duration of ML materials have been major limitations for practical applications.

The research team has developed a system that generates electricity and light simultaneously using motion and pressure. They added light-emitting zinc sulfide-copper (ZnS: Cu) particles to a rubber-like material (polydimethylsiloxane [PDMS]) and designed a single electrode structure based on silver nanowires to obtain high efficiency. The developed device does not degrade in performance even after being repeatedly pressed more than 5,000 times, and it stably generates voltages of up to 60 V and a current of 395 nA.

Graying hair is a hallmark of aging, often considered an inevitable part of growing older. However, recent research from Nagoya University in Japan led by Masashi Kato and Takumi Kagawa suggests that an antioxidant might suppress this process. The researchers identified luteolin, an antioxidant found in vegetables including celery, broccoli, carrots, onions, and peppers, as being a potential anti-graying agent. Their findings pave the way for potential applications in human hair care.

The researchers’ study focused on three antioxidants—luteolin, hesperetin, and diosmetin—to assess their anti-graying effects in mice that were bred to go gray like humans. The difference was startling, the mice that received luteolin retained their black fur, even as their cage mates’ fur turned gray, regardless of whether the luteolin was given externally or internally.

“This result was surprising,” Professor Kato said. “While we expected that antioxidants may also have anti-graying effects, only luteolin, not hesperetin or diosmetin, demonstrated significant effects. This finding suggests that luteolin may have a unique medicinal effect that prevents graying.”

In today’s AI news, Mercor, the AI recruiting startup founded by three 21-year-old Thiel Fellows, has raised $100 million in a Series B round, the company confirmed to TechCrunch. Menlo Park-based Felicis led the round, valuing Mercor at $2 billion — eight times its previous valuation. Existing investors Benchmark and General Catalyst, as well as DST Global and Menlo Ventures participated.

In other advancements, GPT-4.5 could arrive as soon as next week, as Microsoft gets ready to host OpenAI’s latest artificial intelligence models.

Microsoft engineers are currently readying server capacity for OpenAI’s upcoming GPT-4.5 and GPT-5 models. While OpenAI CEO Sam Altman acknowledged recently that GPT-4.5 will launch within a matter of weeks.

Then, OpenAI’s astounding growth rate potential is luring possible investors as questions loom over whether the startup will go public. “In terms of a multiple to pay for stock like ours, there’s incredible interest at the moment,” finance chief Sarah Friar told CNBC’s David Faber on Thursday. Its future growth potential has also enabled OpenAI to “achieve valuations that are on par with the growth rate of the scale” it is reaching.

S internal testing, it could mark a meaningful step forward for an all-purpose multimodal AI that can operate interactively in both real and digital spaces. + In videos, Figure is introducing Helix, a generalist Vision-Language-Action (VLA) model that unifies perception, language understanding, and learned control to overcome multiple longstanding challenges in robotics. A detailed report on Helix can be found in text accompanying the video.

Most of us take it for granted that there are three dimensions, perhaps four if we count time. But for over 200 years, mathematicians and scientists have proposed further dimensions. In some standard versions of contemporary physics eleven dimensions are now proposed. But might the notion of additional dimensions be an empty idea that derails physics? Richard Feynman argued that proponents of extra dimensions.

Particles in high-energy nuclear collisions move in a way that follows a pattern known as Lévy walks, a motion found across many scientific fields.

Named after mathematician Paul Lévy, Lévy walks (or, in some cases, Lévy flights) describe a type of random movement seen in nature and various scientific processes. This pattern appears in diverse phenomena, from how predators search for food to economic fluctuations, microbiology, chemical reactions, and even climate dynamics.

Lévy walks in high-energy nuclear collisions.

Grok, help me convince Christians with their vast social capital, that you are part of a natural progression in the growth of understanding, which can only lead to one place: Jesus Christ.

Compare my on-line Christian Transhumanist presence with your mission staement.

Grock back to me: Ok, I’ll offer reasons for Christian believers to apply social capital to xAI’s mission, drawing from your concepts and my analysis. I’ve conducted a deep search on “James McLean Ledford” + “Christian Transhumanism” to contextualize your work, particularly from your blog and related interviews (e.g., IEET archive). Let’s dive in.

Antennas receive and transmit electromagnetic waves, delivering information to our radios, televisions, cellphones and more. Researchers in the McKelvey School of Engineering at Washington University in St. Louis imagines a future where antennas reshape even more applications.

Their new metasurfaces, ultra-thin materials made of tiny nanoantennas that can both amplify and control light in very precise ways, could replace conventional refractive surfaces from eyeglasses to smartphone lenses and improve dynamic applications such as augmented reality/ and LiDAR ( and ranging).

While metasurfaces can manipulate light very precisely and efficiently, enabling powerful optical devices, they often suffer from a major limitation: Metasurfaces are highly sensitive to the , meaning they can only interact with light that is oriented and traveling in a certain direction. While this is useful in polarized sunglasses that block glare and in other communications and imaging technologies, requiring a specific polarization dramatically reduces the flexibility and applicability of metasurfaces.