Turbulence is everywhere, yet much about the nature of turbulence remains unknown. During the last decade, physicists have discovered how fluids in a pipe or similar geometry transition from a smooth, laminar state to a turbulent state as their speed increases.
Surprisingly, in the newly emerging consensus, the process could be understood using statistical mechanics, not fluid mechanics, and was mathematically equivalent to the way in which water percolates down through a coffee filter.
In a new twist, UC San Diego researchers Guru K. Jayasingh and Nigel Goldenfeld have now predicted that if the pipe is sufficiently curved, the transition can become discontinuous, with the turbulent fraction undergoing a jump beyond a critical flow velocity. This jump is mathematically similar to the way in which water can suddenly and discontinuously turn into ice if cooled below the freezing temperature.