Toggle light / dark theme

Scientists have unlocked a new way to control ionization, the process where atoms lose electrons, using specially designed light beams

By leveraging optical vortex beams, light that carries angular momentum, they can precisely dictate how electrons break free from atoms. This discovery could reshape imaging technology, enhance particle acceleration, and open doors to advancements in quantum computing.

Performing computation using quantum-mechanical phenomena such as superposition and entanglement.

Researchers have simplified a highly complex quantum imaging technique, 2DES, used to observe ultrafast electron interactions.

By refining an existing interferometer design, they improved control over laser pulses, unlocking new capabilities for studying energy transfer in materials.

Unveiling the ultrafast world of electrons.

New insights from the Atacama Cosmology Telescope offer unprecedented images of the universe at 380,000 years old, revealing movements and polarization of cosmic light with exceptional clarity.

These findings not only enhance our understanding of cosmic microwave background radiation but also confirm the fundamental theories of cosmic structure and expansion, while setting new standards for observational cosmology.

Revolutionary Universe Imaging

A curiosity about tiny dots on a germanium wafer with metal films led to the discovery of intricate spiral patterns etched by a chemical reaction. Further experiments revealed that these patterns emerge from chemical reactions interacting with mechanical forces through a deforming catalyst. This breakthrough marks the most significant advance in studying chemical pattern formation since the 1950s. Understanding these complex systems could shed light on natural processes like crack formation in materials and the effects of stress on biological growth.

University of California, Los Angeles doctoral student Yilin Wong noticed tiny dots appearing on one of her samples, which had been accidentally left out overnight. The layered sample consisted of a germanium wafer topped with evaporated metal films in contact with a drop of water. On a whim, she examined the dots under a microscope and couldn’t believe her eyes. Beautiful spiral patterns had been etched into the germanium surface by a chemical reaction.

Wong’s curiosity led her on a journey of discovery, revealing something never seen before: hundreds of nearly identical spiral patterns spontaneously forming on a centimeter-square germanium chip. Even more remarkably, small changes in experimental parameters, such as the thickness of the metal film, produced different patterns, including Archimedean spirals, logarithmic spirals, lotus flower shapes, radially symmetric patterns, and more.

Since it was first synthesized in a post-WW2 American lab in 1949, berkelium has been a rebel of the periodic table, defying quantum mechanics and taking on an extra positive charge that its relatives would never.

Now, a team of scientists from berkelium’s alma mater, Lawrence Berkeley National Laboratory, has wrangled the elusive element into a rare partnership with carbon that will enable them to study it in more detail.

Thanks to challenges involved in producing and safely containing the heavy element, few chemists have had the privilege of dealing with berkelium. Just one gram of the stuff can cost a boggling US$27 million. For this experiment, just 0.3 milligrams of berkelium-249 was required.

Google is making the biggest ever acquisition in its history by purchasing cloud security company Wiz in an all-cash deal worth $32 billion.

“This acquisition represents an investment by Google Cloud to accelerate two large and growing trends in the AI era: improved cloud security and the ability to use multiple clouds (multicloud),” the tech giant said today.

It added the acquisition, which is subject to regulatory approvals, is meant to provide customers with a “comprehensive security platform” that secures modern IT environments.