Menu

Blog

Page 7986

Jan 8, 2020

7-Ketocholesterol in disease and aging

Posted by in categories: biotech/medical, life extension

7-Ketocholesterol is a harmful oxidized byproduct of cholesterol, it is highly toxic with no redeeming qualities and serves no purpose in our bodies aside from allowing heart disease to develop. Check out Underdog Pharma’s recent review at Science Direct to learn more!


Oxidative stress has long been causatively implicated in the aging process [219,220]. As described in section 2, 7KC is the most common stable product of a reaction between cholesterol and a free radical. This is a vicious cycle as 7KC also leads to increased free radical production and release, seemingly by plasma membrane permeabilization. As discussed above, mitochondrial dysfunction and free-radical formation are also strongly implicated in the aging process and so while the precise mechanistic links between mitochondria, 7KC, and aging are still being elucidated they seem likely to be intertwined.

Is 7KC a biomarker of aging? As discussed in section 4, 7KC accumulation is directly implicated in many diseases of aging, including atherosclerosis, heart failure, AMD, NAFLD, and AD. It is thus reasonable to hypothesize that when otherwise unrelated diseases of aging share a common cause, that this cause is likely to be a part of the biological aging process. 7KC is known to accumulate in phagocytic cells such as macrophages (promoting the formation of foam cells), RPE cells, and microglia. It has also been suggested that c. elegans subjected to 7KC could be a good model of 7KC-dependent aging [221]. As 7KC is broadly toxic, and most cells seem to have difficulty metabolizing it, it may be that, with age, 7KC is bioaccumulating and impairing functional activity of the cells and tissue.

Continue reading “7-Ketocholesterol in disease and aging” »

Jan 8, 2020

Intel Maps Out a Foldable, AI-Infused PC Future

Posted by in categories: futurism, robotics/AI

The company’s latest chips—and the bending gadgets they power—are learning to think for themselves.

Jan 8, 2020

White House proposes guidelines for regulating the use of AI

Posted by in categories: biotech/medical, robotics/AI, security, transportation

The Trump administration is proposing new rules to guide future federal regulation of artificial intelligence used in medicine, transportation and other industries.

But the vagueness of the principles announced by the White House is unlikely to satisfy AI watchdogs who have warned of a lack of accountability as computer systems are deployed to take on human roles in high-risk social settings, such as mortgage lending or job recruitment.

The White House said that in deciding regulatory action, U.S. agencies “must consider fairness, non-discrimination, openness, transparency, safety, and security.” But federal agencies must also avoid setting up restrictions that “needlessly hamper AI innovation and growth,” reads a memo being sent to U.S. agency chiefs from Russell Vought, acting director of the Office of Management and Budget.

Jan 8, 2020

Here Are 5 Science-Backed Ways to Make Your Microbiome Healthier in 2020

Posted by in categories: biotech/medical, food, health, science

It’s common for people to focus on their health at the start of the year.

But few consider the well being of the microbes that live inside the human gut – the microbiome – which are vital to an individual’s good health.

How important are these bacteria? There are as many bacterial cells in us as there are human cells, and they help control everything from inflammation and the development and treatment of cancer to how much energy we get from our foods and perhaps even what foods we crave and our moods.

Jan 7, 2020

How a chunk of human brain survived intact for 2600 years

Posted by in category: neuroscience

Unusual protein aggregates could have preserved the Iron Age brain.

Jan 7, 2020

NASA’s TESS Planet Hunter Finds Its 1st Earth-Size World in ‘Habitable Zone’

Posted by in categories: solar power, space

For the first time, the agency’s Transiting Exoplanet Survey Satellite (TESS) has discovered a roughly Earth- planet in the habitable zone of its host star, the zone of orbital distances where liquid water could be stable on a world’s surface.

NASA’s TESS Planet Hunter Finds Its 1st Earth-Size World in ‘Habitable Zone’ : Read more

Interesting, perhaps pushing the paradigm limits here. 86% of solar energy is similar to Precambrian earth during the Faint Young Sun, a snow ball earth. Part of the report that is a bit confusing to me is the comment “One of the other planets is a red dwarf about 40% as massive, 40% as wide and 50% as hot as Earth’s sun.” I think this is about the host star being a red dwarf star. Red dwarfs can be flaring stars and cause problems for *habitable* exoplanets. The Sun spins about 2 km/s at the its equator, red dwarf stars can spin faster like 4 km/s or faster, rotation periods 1 day to 10 days so red dwarfs can emit more flares. The report does comment “In 11 months of data, we saw no flares from the star, which improves the chances TOI 700 d is habitable and makes it easier to model its atmospheric and surface conditions,” discovery team leader Emily Gilbert, a graduate student at the University of Chicago, said in the same statement.

Jan 7, 2020

Magnitude of Great Lisbon Earthquake may have been lower than previous estimates

Posted by in category: futurism

The magnitude of the Great Lisbon Earthquake event, a historic and devastating earthquake and tsunami that struck Portugal on All Saints’ Day in 1755, may not be as high as previously estimated.

In his study published in the Bulletin of the Seismological Society of America, Joao F. B. D. Fonseca at the Universidade de Lisboa used macroseismic data—contemporaneous reports of shaking and damage—from Portugal, Spain and Morocco to calculate the ’s magnitude at 7.7. Previous estimates placed the earthquake at magnitude 8.5 to 9.0.

Fonseca’s analysis also locates the epicenter of the 1755 earthquake offshore of the southwestern Iberian Peninsula, and suggests the rupture was a complicated one that may have involved faulting onshore as well. This re-evaluation could have implications for the seismic hazard map of the region, he said.

Jan 7, 2020

Microplastics Found in Human Gut for the First Time

Posted by in category: biotech/medical

Read more

Jan 7, 2020

SpaceX Just Launched a Fleet of Starlink Satellites. Here’s How to Spot Them in the Sky

Posted by in categories: internet, satellites

X just launched its latest batch of Starlink internet satellites, and you might be able to spot the craft overhead if you know where to look.

Jan 7, 2020

Cancer-like metabolism makes brain grow

Posted by in categories: biotech/medical, evolution, genetics, neuroscience

The size of the human brain increased profoundly during evolution. A certain gene that is only found in humans triggers brain stem cells to form a larger pool of stem cells. As a consequence, more neurons can arise, which paves the way to a bigger brain. This brain size gene is called ARHGAP11B and so far, how it works was completely unknown. Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden now uncovered its mode of action. They show that the ARHGAP11B protein is located in the powerhouse of the cell—the mitochondria—and induces a metabolic pathway in the brain stem cells that is characteristic of cancer cells.

The research group of Wieland Huttner, a founding director of the Max Planck Institute of Molecular Cell Biology and Genetics, has been investigating the underlying the expansion of the brain during mammalian evolution for many years. In 2015, the group reported a key role for a gene that is only present in humans and in our closest extinct relatives, the Neanderthals and Denisovans. This gene, named ARHGAP11B, causes the so-called basal brain stem to expand in number and to eventually increase the production of neurons, leading to a bigger and more folded brain in the end. How the gene functions within the basal brain stem cells has been unknown so far.

Takashi Namba, a postdoctoral scientist in the research group of Wieland Huttner, wanted to find the answer to this question, together with colleagues from the Max Planck Institute, the University Hospital Carl Gustav Carus Dresden, and the Department of Medical Biochemistry at the Semmelweis University, Budapest. He found that the ARHGAP11B protein is located in mitochondria, the organelles that generate most of the cell’s source of chemical energy and hence are often referred to as the powerhouse of the cell. Takashi Namba explains the results: We found that ARHGAP11B interacts with a protein in the membrane of mitochondria that regulates a membrane pore. As a consequence of this interaction, the pores in the membrane are closing up, preventing calcium leakage from the mitochondria. The resulting higher calcium concentration causes the mitochondria to generate chemical energy by a metabolic pathway called glutaminolysis.