Toggle light / dark theme

Summary: A new machine learning model, AutMedAI, can predict autism in children under two with nearly 80% accuracy, offering a promising tool for early detection and intervention.

The model analyzes 28 parameters available before 24 months, such as age of first smile and eating difficulties, to identify children likely to have autism. Early diagnosis is crucial for optimal development, and further validation of the model is underway.

Quantum simulation enables scientists to simulate and study complex systems that are challenging or even impossible using classical computers across various fields, including financial modeling, cybersecurity, pharmaceutical discoveries, AI and machine learning. For instance, exploring molecular vibronic spectra is critical in understanding the molecular properties in molecular design and analysis.

The electron shell of atoms acts as an “electromagnetic shield,” preventing direct access to the nucleus and its properties. A team in the group of Klaus Blaum, director at the Max Planck Institute for Nuclear Physics in Heidelberg, has now succeeded in precisely measuring the effect of this shielding in beryllium atoms. The study is published in the journal Nature.

Engineers have designed a tiny battery, smaller than a grain of sand, to power microscopic robots for jobs such as drug delivery or locating leaks in gas pipelines.


A tiny battery designed by MIT engineers could enable the deployment of cell-sized, autonomous robots for drug delivery within in the human body, as well as other applications such as locating leaks in gas pipelines.

The new battery, which is 0.1 millimeters long and 0.002 millimeters thick — roughly the thickness of a human hair — can capture oxygen from air and use it to oxidize zinc, creating a current with a potential of up to 1 volt. That is enough to power a small circuit, sensor, or actuator, the researchers showed.

“We think this is going to be very enabling for robotics,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the senior author of the study. “We’re building robotic functions onto the battery and starting to put these components together into devices.”