Toggle light / dark theme

The remains of a giant segment of a Chinese rocket crash-landed in the Atlantic Ocean this week, representing the most significant uncontrolled descent of a piece of human-made space debris in decades.

The core stage of a Chinese Long March 5B (CZ–5B) rocket, which was successfully launched on May 5, spent several days in orbit as part of its mission, before re-entering Earth’s atmosphere and falling to Earth, splashing down in ocean waters off the west coast of Mauritania in northwest Africa.

The descent, which was eventually confirmed by the 18th Space Control Squadron, a unit of the US Air Force, was notable not just for its huge mass, but also for the extent of the window of uncontrolled descent, which had space-object trackers guessing just where and when the out-of-control rocket would eventually land.

Universal quantum computation1 is striking for its unprecedented capability in processing information, but its scalability is challenging in practice because of the inevitable environment noise. Although quantum error correction (QEC) techniques2,3,4,5,6,7,8 have been developed to protect stored quantum information from leading orders of error, the noise-resilient processing of the QEC-protected quantum information is highly demanded but remains elusive9. Here, we demonstrate phase gate operations on a logical qubit encoded in a bosonic oscillator in an error-transparent (ET) manner. Inspired by refs. 10,11, the ET gates are extended to the bosonic code and are able to tolerate errors on the logical qubit during gate operations, regardless of the random occurrence time of the error. With precisely designed gate Hamiltonians through photon-number-resolved a.c. Stark shifts, the ET condition is fulfilled experimentally. We verify that the ET gates outperform the non-ET gates with a substantial improvement of gate fidelity after an occurrence of the single-photon-loss error. Our ET gates in superconducting quantum circuits can be readily extended to multiple encoded qubits and a universal gate set is within reach, holding the potential for reliable quantum information processing.

O,.,o.


The weird world of quantum physics is being harnessed for some fascinating use cases. In the latest example, physicists have developed and demonstrated a “quantum radar” prototype that uses the quantum entanglement phenomenon to detect objects, a system which could eventually outperform conventional radar in some circumstances.

Quantum entanglement describes the bizarre state where two particles can become linked so tightly that they seem to communicate instantly, no matter how far apart they are. Measuring the state of one particle will instantly change the state of the other, hypothetically even if it’s on the other side of the universe. That implies that the information is moving faster than the speed of light, which is thought to be impossible – and yet, it’s clearly and measurably happening. The phenomenon even unnerved Einstein himself, who famously described it as “spooky action at a distance.”

While we still don’t entirely understand why or how it works, that’s not stopping scientists figuring out ways to use it to our advantage. Strides are being made towards creating quantum computers and a quantum internet, both of which would be super fast and nigh-unhackable. And now, in a new study by physicists at the Institute of Science and Technology Austria (IST Austria), MIT and the University of York, the phenomenon been applied to radar.

If you are interested in age reversal, and you haven’t read Dr David Sinclair (Harvard Medical School) yet, then I’d recommend this research paper.

“Excitingly, new studies show that age-related epigenetic changes can be reversed with interventions such as cyclic expression of the Yamanaka reprogramming factors. This review presents a summary of epigenetic changes that occur in aging, highlights studies indicating that epigenetic changes may contribute to the aging process and outlines the current state of research into interventions to reprogram age-related epigenetic changes.”


The aging process results in significant epigenetic changes at all levels of chromatin and DNA organization. These include reduced global heterochromatin, nucleosome remodeling and loss, changes in histone marks, global DNA hypomethylation with CpG island hypermethylation, and the relocalization of chromatin modifying factors. Exactly how and why these changes occur is not fully understood, but evidence that these epigenetic changes affect longevity and may cause aging, is growing. Excitingly, new studies show that age-related epigenetic changes can be reversed with interventions such as cyclic expression of the Yamanaka reprogramming factors. This review presents a summary of epigenetic changes that occur in aging, highlights studies indicating that epigenetic changes may contribute to the aging process and outlines the current state of research into interventions to reprogram age-related epigenetic changes.

The term “epigenetics” is thrown around a lot. Originally, it was coined to describe heritable changes that were non-mendelian, but use of the term has evolved. These days, “epigenetics” more generally refers to all non-genomic information storage in cells including gene networks, chromatin structure and post-translational modifications to histones. With aging, there are distinct changes across the epigenome from DNA modifications to alterations in global chromatin organization. But key questions remain unanswered: How and why do these changes occur? Do these changes drive disease and aging? Are they reversible?

In a little over a month, a team of physicists and engineers from around the world took a simplified ventilator design from concept all the way through approval by the U.S. Food and Drug Administration. This major milestone marks the ventilator as safe for use in the United States under the FDA’s Emergency Use Authorization, which helps support public health during a crisis.

The Mechanical Ventilator Milano, or MVM, is the brainchild of physicist Cristiano Galbiati. The Gran Sasso Science Institute and Princeton University professor, who normally leads a dark matter experiment in Italy called DarkSide-20k, found himself in lockdown in Milan, a city hit hard by COVID-19. Hearing reports of ventilator shortages and wanting to help, Galbiati reached out to fellow researchers to develop a ventilator with minimal components that could be quickly produced using commonly available parts.

“The sense of crisis was palpable, and I knew the availability of ventilators was critical,” said Galbiati, who obtained his Ph.D from the University of Milan. “We had been doing some complicated projects in physics that required working with gases, and I thought it our duty to find a way to push oxygen into the lungs of patients.”

Tesla CEO Elon Musk said Monday that the company’s factory in Fremont, California is open and has restarted production despite a stay-at-home order issued by Alameda County.

Musk said in tweet Monday afternoon that he will “be on the line,” a reference to the assembly line at the factory where Tesla makes the Model X, Model S, Model 3 and Model Y. He added “if anyone is arrested, I ask that it only be me.”

Tesla is restarting production today against Alameda County rules. I will be on the line with everyone else. If anyone is arrested, I ask that it only be me.

Within the last few years, some funeral directors have invested in more eco-friendly alternatives to traditional burials and flame cremations. One of these methods is a process known as Alkaline Hydrolysis, or water cremation.

Check out VICE News for more: http://vicenews.com

Follow VICE News here:
: https://www.facebook.com/vicenews
: https://twitter.com/vicenews
Tumblr: http://vicenews.tumblr.com/
Instagram: http://instagram.com/vicenews
More videos from the VICE network: https://www.fb.com/vicevideo

#VICENews #News