Toggle light / dark theme

This raises the question of whether AI — defined as algorithms that mimic human intelligence — can deliver on its potential, and when. The answer is crucial because AI could become the ultimate industry disrupter, threatening tens of millions of jobs in Asia as business processes are automated. In addition, AI is the subject of intense rivalry between the US and China.


Unicorns abound but enthusiasm has dimmed. Will AI fulfil its potential?

INDIANAPOLIS (WISH) — First is was monkeys, then dogs.

Now, researchers are turning to cows in hopes of developing a treatment for the coronavirus.

Scientists at SAb Biotherapeutics in South Dakota created an embryo via genetic engineering that contains human chromosomes. The embryo was then implanted into cattle. The cows gave birth to calves that internally function similarly to a person, specifically with regards to the human immune system.

Circa 2019


Airless tires for everyday cars might soon be far more practical. GM and Michelin have unveiled a prototype of Uptis (Unique Puncture-proof Tire System), a Michelin-made tire intended for passenger cars. It looks like Tweel and other air-free concepts of years past, but its mix of composite rubber and resin embedded fiberglass lets it operate at highway speeds — earlier options tend to work only when you’re slowly putting around. It’s not as visually appealing as conventional tires, but Michelin claims it’s just as comfortable.

More importantly, there’s a tangible roadmap. GM will start testing the Uptis in Michigan later in 2019 on a fleet of Chevy Bolts, and expects the finished version to reach production cars as soon as 2024. The automaker hasn’t named specific car models that will use the new tires.

Various stem cell sources are being explored to treat diabetes since the proof-of-concept for cell therapy was laid down by transplanting cadaveric islets as a part of Edmonton protocol in 2000. Human embryonic stem (hES) cells derived pancreatic progenitors have got US-FDA approval to be used in clinical trials to treat type 1 diabetes mellitus (T1DM). However, these progenitors more closely resemble their foetal counterparts and thus whether they will provide long-term regeneration of adult human pancreas remains to be demonstrated. In addition to lifestyle changes and administration of insulin sensitizers, regeneration of islets from endogenous pancreatic stem cells may benefit T2DM patients. The true identity of pancreatic stem cells, whether these exist or not, whether regeneration involves reduplication of existing islets or ductal epithelial cells transdifferentiate, remains a highly controversial area. We have recently demonstrated that a novel population of very small embryonic-like stem cells (VSELs) is involved during regeneration of adult mouse pancreas after partial-pancreatectomy. VSELs (pluripotent stem cells in adult organs) should be appreciated as an alternative for regenerative medicine as these are autologous (thus immune rejection issues do not exist) with no associated risk of teratoma formation. T2DM is a result of VSELs dysfunction with age and uncontrolled proliferation of VSELs possibly results in pancreatic cancer. Extensive brainstorming and financial support are required to exploit the potential of endogenous VSELs to regenerate the pancreas in a patient with diabetes.

Diabetes is one of the major non-communicable diseases in the world with majority of patients belonging to India, China and USA. Along with associated complications like heart disease and stroke, diabetes results in increased morbidity and mortality and it is expected that by the year 2025, India alone will have more than 70 million diabetics1,2. Diabetes is a metabolic disorder associated with progressive loss or dysfunction of β-cells of pancreas. Onset of type 1 diabetes mellitus (T1DM) occurs when the β-cell mass is reduced to less than 20 per cent due to autoimmune effect, whereas the declining β-cell mass is unable to meet the age-related increased insulin demands of the body in type 2 (T2DM) as a result of insulin resistance and in due course the β-cells are lost by apoptosis. Thus, in both T1 and T2DM, restoration of a functional β-cell mass constitutes the central goal of diabetes therapy.

Millions of people in India and Bangladesh are in the path of a cyclone which is due to make landfall in less than 36 hours, bringing damaging winds and heavy rain to a region already struggling with the coronavirus pandemic.

Super Cyclone Amphan became the strongest storm ever recorded in the Bay of Bengal on Monday night, after intensifying with sustained wind speeds of up to 270 kilometers per hour (165 miles per hours), according to data from the US Joint Typhoon Warning Center.

Amphan has weakened slightly since, but the storm is still the equivalent of a Category 3 Atlantic hurricane, with winds speeds up to 185 kph (115 mph).

Moderna has accelerated its manufacturing capacity for its COVID-19 vaccine candidate mRNA-1273 and additional future products through a 10-year agreement with Lonza announced today by the companies.

The companies agreed to establish manufacturing suites for Moderna at Lonza’s facilities in the U.S. and Switzerland for the production of mRNA-1273. Technology transfer is expected to begin in June, with the first batches of mRNA-1273 set to be manufactured at Lonza’s U.S. site in July.

Moderna and Lonza also said they intend to establish additional production suites across Lonza’s worldwide facilities, ultimately allowing for the manufacture of material equivalent to up to 1 billion doses of mRNA-1273 per year for use worldwide, based on the currently expected dose of 50 mcg.

A bit of transhuman fiction. It doesn’t take long.


What would it be like to live forever? Writer Richard Dooling explores this question in this fictional piece from Esquire.

Originally published May 1999. Published on KurzweilAI.net May 22, 2001.

1994

March 30: Today I turn forty. I am officially protected by the Age Discrimination in Employment Act. If I had an employer, I could now sue him if he discriminated against me because of my, ulp, age. Until now, I’ve half believed in one of Vladimir Nabokov’s elegant syllogisms: Other men die, but I am not other men; therefore, I’ll not die. Nabokov died in 1977. Every time I look in the bathroom mirror, I see Death, the Eternal Footman (looking quite proud), standing in the shadows behind me, holding my coat, snickering. I live with my family in my hometown of Omaha. My selfish genes have managed an immortality of sorts by getting themselves into four delightful children, who are still too young to turn on me. My wife and I have enjoyed nine years of marriage, what Robert Louis Stevenson called “a friendship recognized by the police.” I’m Catholic, so as mortality looms on the far side of the middle-age horizon, I seek consolation in my Christian faith and one of its central tenets: belief in the immortality of my soul. But the lawyer in me also highlights the usual caveats and provisos. According to the Scriptures, my quality of life after death may depend on my ability to love my fellow man. This is a big problem. I forgot to mention that in addition to being a practicing Catholic, I’m also a practicing misanthrope. As I see it, my only chance of avoiding eternal damnation is to stay alive until I learn to love other people. Or until some future pope issues an encyclical providing spiritual guidance for misanthropic Catholics. November 16: My second novel, White Man’s Grave, is a finalist for the National Book Award. For at least a day or two, I wonder if I might be able to achieve immortality by writing great literature. My wife and I fly to the awards ceremony in New York City, where William Gaddis wins the National Book Award in Fiction for A Frolic of His Own.

Scientists are using light waves to accelerate supercurrents and access the unique properties of the quantum world, including forbidden light emissions that one day could be applied to high-speed, quantum computers, communications and other technologies.

The scientists have seen unexpected things in supercurrents—electricity that moves through materials without resistance, usually at super cold temperatures—that break symmetry and are supposed to be forbidden by the conventional laws of physics, said Jigang Wang, a professor of physics and astronomy at Iowa State University, a senior scientist at the U.S. Department of Energy’s Ames Laboratory and the leader of the project.

Wang’s lab has pioneered use of light pulses at terahertz frequencies- trillions of pulses per second—to accelerate electron pairs, known as Cooper pairs, within supercurrents. In this case, the researchers tracked light emitted by the accelerated electrons pairs. What they found were “second harmonic ,” or light at twice the frequency of the incoming light used to accelerate electrons.