Toggle light / dark theme

Interferometers, devices that can modulate aspects of light, play the important role of modulating and switching light signals in fiber-optic communications networks and are frequently used for gas sensing and optical computing.

Now, applied physicists at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have invented a new type of interferometer that allows precise control of light’s frequency, intensity and mode in one compact package.

Called a cascaded-mode interferometer, it is a single waveguide on a silicon-on-insulator platform that can create multiple signal paths to control the amplitude and phase of light simultaneously, a process known as optical spectral shaping. By combining mechanisms to manipulate different aspects of light into a single waveguide, the could be used in advanced nanophotonic sensors or on-chip quantum computing.

When the plasma inside a fusion system starts to misbehave, it needs to be quickly cooled to prevent damage to the device. Researchers at Commonwealth Fusion Systems believe the best bet is a massive gas injection: essentially, a well-timed, rapid blast of cooling gas inside their fusion system, which is known as SPARC.

But how many gas valves does it take to quickly tame a plasma that is hotter than the sun? The team has to strike the perfect balance: with too few valves, some parts of SPARC might overheat. With too many, valuable space inside the vessel would be wasted.

To answer this question, researchers turned to a known as M3D-C1, which is developed and maintained by scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). The code was used to model different valve configurations, and the results show that spacing six gas valves around the fusion vessel, with three on the top and three on the bottom, provides optimal protection.

NASA’s Parker Solar Probe just screamed past the Sun for the 23rd time, once again matching its own records for closest approach and fastest human-made object. Zooming through space at 430,000 mph and skimming just 3.8 million miles from the solar surface, the probe is in perfect health and sendi

Scientists have provided the most detailed account yet of the earliest stages of DNA replication, an essential process for all life to grow and reproduce. For the first time, scientists have directly observed the very moment DNA begins to unravel, a critical molecular event that underpins its rol

A hidden quantum wave may keep particles moving, even when everything else freezes. Researchers discovered that phasons, a type of low-temperature quasiparticle found in crystal lattices, allow interlayer excitons to move, even at temperatures where motion is expected to stop.

A major telecommunications company located in Asia was allegedly breached by Chinese state-sponsored hackers who spent over four years inside its systems, according to a new report from incident response firm Sygnia.

The cybersecurity company is tracking the activity under the name Weaver Ant, describing the threat actor as stealthy and highly persistent. The name of the telecom provider was not disclosed.

“Using web shells and tunneling, the attackers maintained persistence and facilitated cyber espionage,” Sygnia said. “The group behind this intrusion […] aimed to gain and maintain continuous access to telecommunication providers and facilitate cyber espionage by collecting sensitive information.”