Menu

Blog

Page 7841

Jul 1, 2019

Geth powered by Wikia

Posted by in categories: robotics/AI, space

The geth (“Servant of the People” in Khelish) are a race of networked artificial intelligences that reside beyond the Perseus Veil. The geth were created by the quarians as laborers and tools of war. When the geth became sentient and began to question their masters, the quarians attempted to exterminate them. The geth won the resulting war, and reduced the quarians to a race of nomads.

The history of the geth’s creation and evolution serves as a warning to the rest of the galaxy of the potential dangers of artificial intelligence and to the legally enforced, systematic repression of artificial intelligences throughout galactic society.

Jul 1, 2019

Nicolas Cage Can Now Be Put Into Any Movie in History Thanks to A Machine-Learning Algorithm

Posted by in categories: information science, robotics/AI

Let’s face it, you’ve always wanted to see Nicolas Cage as James Bond and Indiana Jones.

Jul 1, 2019

The Mycelium Revolution Is Upon Us

Posted by in categories: biotech/medical, food

All hail the mushroom king :P.


It’s the fungus mushrooms are made of, but it can also produce everything from plastics to plant-based meat to a scaffolding for growing organs—and much more.

  • By Eben Bayer on July 1, 2019

Jul 1, 2019

Female bed bugs ‘control’ their immune systems ahead of mating to prevent against STIs

Posted by in categories: biotech/medical, food

Female bedbugs who are ‘full bellied’ and therefore more attractive mates for males, are able to boost their immune systems in anticipation of catching sexually transmitted infections, research has found.

Led by the University of Sheffield, the research discovered a correlation between fed females and the chances of them being inseminated and therefore infected as a result.

To mitigate this, female bedbugs that have just dined on blood and are therefore full, are able to cleverly manage their simple in anticipation of mating. This is in comparison to female bedbugs that do not get regular food, do not mate regularly and therefore do not have the same need to boost their immune system in defence of .

Jul 1, 2019

Theoretical physicists unveil one of the most ubiquitous and elusive concepts in chemistry

Posted by in categories: chemistry, computing, particle physics, quantum physics

Oxidation numbers have so far eluded any rigorous quantum mechanical definition. A new SISSA study, published in Nature Physics, provides such a definition based on the theory of topological quantum numbers, which was honored with the 2016 Nobel Prize in Physics, awarded to Thouless, Haldane and Kosterlitz. This result, combined with recent advances in the theory of transport achieved at SISSA, paves the way to an accurate, yet tractable, numerical simulation of a broad class of materials that are important in energy-related technologies and planetary sciences.

Every undergraduate student in the natural sciences learns how to associate an integer oxidation number to a chemical species participating in a reaction. Unfortunately, the very concept of oxidation state has thus far eluded a rigorous quantum mechanical definition, so that no method was known until now to compute oxidation numbers from the fundamental laws of nature, let alone demonstrate that their use in the simulation of charge transport does not spoil the quality of numerical simulations. At the same time, the evaluation of electric currents in ionic conductors, which is required to model their transport properties, is presently based on a cumbersome quantum-mechanical approach that severely limits the feasibility of large-scale computer simulations. Scientists have lately noticed that a simplified model where each atom carries a charge equal to its oxidation number may give results in surprising good agreement with rigorous but much more expensive approaches.

Jul 1, 2019

Study unveils new supersymmetry anomalies in superconformal quantum field theories

Posted by in categories: mathematics, particle physics, quantum physics

Researchers at the University of Southampton and the Korea Institute for Advanced Study have recently showed that supersymmetry is anomalous in N=1 superconformal quantum field theories (SCFTs) with an anomalous R symmetry. The anomaly described in their paper, published in Physical Review Letters, was previously observed in holographic SCFTs at strong coupling, yet their work confirms that it is already present in the simplest free STFCs.

“Supersymmetry is a symmetry that relates particles with integer and half-integer spin, and has played a central role in many advances in since its discovery,” Kostas Skenderis, one of the researchers who carried out the study, told Phys.org. “It has been used as a means to understand the behavior of strongly interacting where our usual theoretical tools () are not applicable, as well as in some of the main candidates for beyond the Standard Model physics.”

Supersymmetry underlies the mathematical consistency of string theory, which is the most complete theory of gravity proposed so far. A quantum anomaly, such as that observed by the researchers, is essentially the failure of a symmetry to be preserved at a quantum level. These anomalies typically come in two types: “bad” ones, which render string theory mathematically inconsistent and “healthy” ones, which capture important quantum properties of the theory.

Jul 1, 2019

Solving a condensation mystery

Posted by in categories: computing, engineering, sustainability

Condensation might ruin a wood coffee table or fog up glasses when entering a warm building on a winter day, but it’s not all inconveniences; the condensation and evaporation cycle has important applications.

Water can be harvested from “thin air,” or separated from salt in desalination plants by way of . Due to the fact condensing take heat with them when they evaporate, it’s also part of the cooling process in the industrial and high-powered computing arenas. Yet when researchers took a look at the newest method of condensation, they saw something strange: When a special type of is covered in a thin layer of oil, condensed water droplets seemed to be randomly flying across the surface at high velocities, merging with larger droplets, in patterns not caused by gravity.

“They’re so far apart, in terms of their own, relative dimensions”—the droplets have a diameter smaller than 50 micrometers—” and yet they’re getting pulled, and moving at really high velocities,” said Patricia Weisensee, assistant professor of mechanical engineering & materials science in the McKelvey School of Engineering at Washington University in St. Louis.

Jul 1, 2019

Has the speed of propagation of a magnetic force field been measured? If so what is it?

Posted by in categories: physics, space

Ask the experts your physics and astronomy questions, read answer archive, and more.

Jul 1, 2019

Rejuvenation Roundup June 2019

Posted by in category: life extension

There’s only a few days left before our second conference in New York City takes place, and June has brought a lot of exciting news, such as the results of UNITY’s senolytic human trial, as well as a number of episodes of LifeXtenShow, our new YouTube show that is now a little over a month old already. Let’s dig into the details!

LEAF News

Jul 1, 2019

Hubble Space Telescope Snaps ‘In Bloom’ Spiral Galaxy in Space

Posted by in category: space

The Hubble Space Telescope recently spotted a gorgeous “in bloom” spiral galaxy and it shows vibrant star formation pockets that look like red flowers.

The spiral galaxy, which is named NGC 972, was shared by the Hubble Space Telescope on Monday, July 1. NGC 972’s orange-pink glow comes from hydrogen gas reacting to intense light beaming outwards from neighboring newborn stars, said a Hubble Space Telescope press release. These bright patches, which are scattered near various cosmic dust streams, are “blooming” like roses in NGC 972.