Menu

Blog

Page 7836

May 31, 2019

Drug-resistant cancer cells create own Achilles heel

Posted by in categories: biotech/medical, genetics, sustainability

The cells of most patients’ cancers are resistant to a class of drugs, called proteasome inhibitors, that should kill them. When studied in the lab, these drugs are highly effective, yet hundreds of clinical trials testing proteasome inhibitors have failed. Now scientists may have solved the mystery of these cells’ surprising hardiness. The key: Resistant cancer cells have shifted how and where they generate their energy. Using this new insight, researchers have identified a drug that resensitizes cancer cells to proteasome inhibitors and pinpointed a gene that is crucial for that susceptibility.

As develop, they accrue multiple genetic alterations that allow the cells to quickly reproduce, spread and survive in distant parts of the body, and recruit surrounding cells and tissues to support the growing tumor. To perform these functions, cancer cells must produce high volumes of the proteins that support these processes. The increased production and numerous mutated proteins of cancer cells make them particularly dependent on the proteasome, which is the cell’s protein degradation machine. These huge protein complexes act as recycling machines, gobbling up unwanted proteins and dicing them into their amino acid building blocks, which can be reused for the production of other proteins.

Previously, researchers exploited cancer cells’ increased dependency on their proteasomes to develop anti-cancer therapies that inhibit the proteasomes’ function. Several distinct proteasome inhibitors have been developed, and when used in the lab, these proteasome inhibitor drugs are indeed highly effective at eradicating tumor cells. However, when administered to animal models or patients with cancer, such as multiple myeloma, proteasome inhibitors have limited efficacy and even initially vulnerable cancer cells quickly develop resistance to them. How do cancer cells so adroitly sidestep drugs that should kill them?

Continue reading “Drug-resistant cancer cells create own Achilles heel” »

May 31, 2019

Stroke study finds mouth bacteria in brain clots

Posted by in categories: biotech/medical, neuroscience

Using DNA evidence, scientists have shown that brain clot samples from people who have had ischemic stroke often contain mouth bacteria.

Read more

May 31, 2019

Dark Energy Could Be Hiding In The “Cosmic Void” Between Galaxies

Posted by in category: cosmology

The spaces between galaxies may be the best place to find dark energy.

Read more

May 31, 2019

Glucosepane Crosslinks and Undoing Age-Related Tissue Damage

Posted by in categories: biotech/medical, life extension

Photo by Erin Ashford Yale University Principal Investigator: David Spiegel Research Team: Prof. Jason Crawford, Nam Kim, Venkata Sabbasani, Matthew Streeter The long-lived collagen proteins that give structure to our arteries and other tissues are continuously exposed to blood sugar and other highly reactive molecules necessary for life. Occasionally, …Glucosepane Crosslinks and Undoing Age-Related Tissue Damage.

Read more

May 31, 2019

Study reveals structure of a ‘master switch’ controlling cell division

Posted by in category: biotech/medical

Unregulated cell division is a hallmark of cancer, and one of the key proteins involved in controlling cell division is called FoxM1. Abnormal activation of FoxM1 is a common feature of cancer cells and is correlated with poor prognosis, metastasis, and resistance to chemotherapy.

Now researchers at UC Santa Cruz have determined the structure of this protein—a kind of “master switch” for cell division—in its inactive or “off” conformation. This new understanding of the structure of FoxM1 could ultimately be used to design new drugs that stabilize the protein in its inactive state and thereby stop the uncontrolled proliferation of cancer cells.

Seth Rubin, professor of chemistry and biochemistry at UC Santa Cruz, explained that FoxM1 is a “transcription factor,” a protein that controls the activity of specific genes.

Continue reading “Study reveals structure of a ‘master switch’ controlling cell division” »

May 31, 2019

ADIFO: The hyper-agile, omnidirectional, supersonic flying saucer

Posted by in category: transportation

At low speed, it operates like a quadcopter, at high speed, it’s a jet-propelled, highly efficient supersonic aircraft whose entire body acts as a low-drag wing. Those are the claims of the Romanian creators of this flying saucer that’s designed to offer unprecedented aerial agility across a broad range of speeds.

Read more

May 31, 2019

A deep dive into Oracle Adaptive Intelligent Apps

Posted by in categories: business, robotics/AI

Learn how the AI and machine learning in Oracle Adaptive Intelligent Apps can automate repetitive business processes in a Q&A with Oracle Vice President Melissa Boxer.

Read more

May 31, 2019

Game Artificial Intelligence that Adapts to the Human Player

Posted by in categories: entertainment, robotics/AI

By pieter spronck and jaap van den herik

While the audiovisual qualities of games have improved significantly over the last twenty years, game artificial intelligence (AI) has been largely neglected. Since the turn of the century game development companies have discovered that nowadays it is the quality of the game AI that sets apart good games from mediocre ones. The Institute of Knowledge and Agent Technology (IKAT) of the Universiteit Maastricht examines methods to enhance game AI with machine learning techniques. Several typical characteristics of games, such as their inherent randomness, require novel machine learning approaches to allow them to deal with game AI.

Most commercial computer games contain computer-controlled agents that oppose the human player. ‘Game AI’ encompasses the decision-making capabilities of these agents. For implementing game AI, especially for complex games, developers usually resort to rule-based techniques in the form of scripts. Scripts have the advantage that they are easy to understand and can be used to implement fairly complex behaviour.

Continue reading “Game Artificial Intelligence that Adapts to the Human Player” »

May 31, 2019

The Expectations And Possibility Of Adaptive AI Hardware

Posted by in categories: innovation, robotics/AI

Recent attempts to move beyond narrow AI applications in industry have struggled to gain traction. ReThink Robotics, a leading startup founded by AI founding MIT researcher Dr. Rodney Brooks to create adaptive collaborative robots for industrial robotics, closed its doors in October 2018 and has since had its IP acquired by HAHN Group. In a retrospective published by The Robot Report, several contributing factors led to the shutdown. ReThink’s reliance on series elastic actuators compromised the precision and repeatability found in typical actuators in favor of safety, which likely led to efforts to compensate on hardware through software.

While the company utilized innovative machine control and machine vision technologies in iterating on their robots, the combination of mechanical motion of firmware at the heart of their products led to a narrow range of issues at varying quality. This made Baxter and Sawyer, ReThink’s flagship industrial robots, ill-suited for adaptive industrial use.

Other companies attempting to build adaptive robots, including Jibo, have met similar troubles. Touted as an interactive social robot with a personality, Jibo launched their eponymous robot in November 2017 with an emphasis on naturalistic human-computer interaction, but entered the market with more limited functionality than cheaper smart assistant speakers. The company has since closed down and transferred ownership of their IP to SQN Venture Partners in November 2018.

Continue reading “The Expectations And Possibility Of Adaptive AI Hardware” »

May 31, 2019

Developing video games with elementary adaptive artificial intelligence in unity: An intelligent systems approach

Posted by in categories: entertainment, robotics/AI

Video games have increasingly demonstrated a great deal of audiovisual realism, in par with the massive performance improvement of computer systems. At the.

Read more