Menu

Blog

Page 7835

Jan 9, 2020

These hacking groups are eyeing power grids, says security company

Posted by in categories: cybercrime/malcode, energy

Cybersecurity company warns that hackers are investigating industrial control systems associated with power infrastructure.

Jan 9, 2020

North Korean hacker group Lazarus is using Telegram to steal cryptocurrency

Posted by in categories: cryptocurrencies, cybercrime/malcode

A hacking group believed to be from North Korea is reportedly stepping up its game to continue its cryptocurrency stealing campaigns.

In a statement published yesterday, security researchers from Kaspersky say they found evidence to suggest Lazarus has made significant changes to its attack methodology.

According to Kaspersky, the hacking group is taking “more careful steps” and is employing “improved tactics and procedures” to steal cryptocurrency.

Jan 9, 2020

Pathways that extend lifespan by 500 percent identified

Posted by in categories: biological, genetics, life extension

Scientists at the MDI Biological Laboratory, in collaboration with scientists from the Buck Institute for Research on Aging in Novato, Calif., and Nanjing University in China, have identified synergistic cellular pathways for longevity that amplify lifespan fivefold in C. elegans, a nematode worm used as a model in aging research.

The increase in lifespan would be the equivalent of a human living for 400 or 500 years, according to one of the scientists.

The research draws on the discovery of two major pathways governing aging in C. elegans, which is a popular model in aging research because it shares many of its genes with humans and because its short lifespan of only three to four weeks allows scientists to quickly assess the effects of genetic and environmental interventions to extend healthy lifespan.

Jan 9, 2020

Shake Hands With The Future With BrainCo’s Brain-Controlled Prosthetic

Posted by in categories: biotech/medical, cyborgs, robotics/AI

Shaking hands with BrainCo’s artificial intelligence-powered prosthetic hand is like shaking hands with an exciting, optimistic version of the future. Here’s what this amazing prosthesis is able to do, and how it promises to transform life for amputees all around the world.

Jan 9, 2020

Special Edition the Dawn of Super Longevity: Scenarios for a Post-Aging Future

Posted by in categories: futurism, life extension

Seeking Delphi podcast host Mark Sackler is joined by panelists Liz Parrish, Aubrey de Grey, David Wood and co-moderator Keith Comito to discuss scenarios for getting to—and dealing with—a post aging future.

Jan 9, 2020

Nanoparticles deliver ‘suicide gene’ therapy to pediatric brain tumors growing in mice

Posted by in categories: biotech/medical, nanotechnology, neuroscience

Johns Hopkins researchers report that a type of biodegradable, lab-engineered nanoparticle they fashioned can successfully deliver a “suicide gene” to pediatric brain tumor cells implanted in the brains of mice. The poly(beta-amino ester) nanoparticles, known as PBAEs, were part of a treatment that also used a drug to kill the cells and prolong the test animals’ survival.

In their study, described in a report published January 2020 in the journal Nanomedicine: Nanotechnology, Biology and Medicine, the researchers caution that for safety and biological reasons, it is unlikely that the herpes simplex virus type I thymidine kinase (HSVtk)—which makes tumor cells more sensitive to the lethal effects of the anti-viral drug ganciclovir—could be the exact therapy used to treat human medulloblastoma and atypical teratoid/rhabdoid tumors (AT/RT) in children.

So-called “suicide ” have been studied and used in cancer treatments for more than 25 years. The HSVtk gene makes an enzyme that helps restore the function of natural tumor suppression.

Jan 9, 2020

Restoring the Ability to Repair and Regenerate As We Age

Posted by in category: biological

“If everything regenerated, there would be no death.” Richard J. Goss, Ph.D.Principles of Regeneration Richard J. Goss, Ph.D., author of Principles of Regeneration, was a visiting scientist at the MDI Biological Laboratory in the late 1960’s and early 1970’s. But is the statement that there would be no death if everything regenerated correct? The zebrafish,…

Jan 9, 2020

Here’s How an Iranian Cyberattack Could Affect You

Posted by in category: cybercrime/malcode

Would you like to live to be 400 years old?

Jan 9, 2020

PES1 is a critical component of telomerase assembly and regulates cellular senescence

Posted by in categories: biotech/medical, life extension

Telomerase defers the onset of telomere shortening and cellular senescence by adding telomeric repeat DNA to chromosome ends, and its activation contributes to carcinogenesis. Telomerase minimally consists of the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR). However, how telomerase assembles is largely unknown. Here, we demonstrate that PES1 (Pescadillo), a protein overexpressed in many cancers, forms a complex with TERT and TR through direct interaction with TERT, regulating telomerase activity, telomere length maintenance, and senescence. PES1 does not interact with the previously reported telomerase components Reptin, Pontin, p23, and Hsp90. PES1 facilitates telomerase assembly by promoting direct interaction between TERT and TR without affecting TERT and TR levels. PES1 expression correlates positively with telomerase activity and negatively with senescence in patients with breast cancer. Thus, we identify a previously unknown telomerase complex, and targeting PES1 may open a new avenue for cancer therapy.

Telomerase is a ribonucleoprotein (RNP) enzyme that adds telomeric repeat DNA to chromosome ends (13). This prevents progressive shortening of telomeres caused by the failure of the DNA replication machinery to duplicate the very end of each chromosome. Once telomeres are shortened to a certain length, cells enter replicative senescence or, alternatively, undergo apoptosis, a major tumor-suppressive mechanism. Telomerase, which is required for de novo telomeric repeat DNA synthesis and telomere maintenance, is expressed in approximately 90% of cancer cells but undetectable in the majority of normal somatic cells (46). Thus, telomerase is thought to be a relevant factor in distinguishing cancer cells from normal cells and has become a target for cancer therapy.

Telomerase is minimally composed of the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR). Studies have shown in vitro assembly of active telomerase by combining the purified RNA component with the TERT synthesized in rabbit reticulocyte extract (7–9). A few accessory proteins have been identified to associate with the active telomerase RNP complex. The molecular chaperones p23 and Hsp90 bind to human TERT (hTERT), and chemical inhibition of Hsp90 decreases telomerase activity (10, 11). However, determining whether Hsp90 is required for active telomerase assembly is difficult because chemical inhibition of a key chaperone in human cells potentially has pleiotropic and indirect effects. Assembly of human TR (hTR) and hTERT into catalytically active telomerase is facilitated by the adenosine triphosphatases Reptin and Pontin (12). Pontin knockdown (KD) reduces telomerase activity and hTR levels.

Jan 9, 2020

In a first for cell biology, scientists observe ribosome assembly in real time

Posted by in category: biological

“The team used an advanced imaging technology called “zero-mode waveguide single-molecule fluorescence microscopy,” which they have adapted in recent years for real-time tracking of RNAs and proteins. Ribosomes are made of both RNA and proteins, reflecting a molecular partnership that is widely believed to go back nearly to the dawn of life on Earth.

In a proof-of-principle study published last year, the researchers used their approach to record an early, brief and relatively well-studied stage of ribosome assembly from the bacterium E. coli. This involved the transcription, or copying out from its corresponding gene, of a ribosomal RNA, and initial interactions of this RNA strand with a ribosomal protein.

In the new study, the team extended this approach by tracking not only the transcription of a ribosomal RNA but also its real-time folding. The work provided a detailed look at a complex, and until-now mysterious, part of E. coli ribosome assembly — the formation of an entire major component, or domain, of the E. coli ribosome, with assistance from eight protein partners that end up incorporated into the structure.”


The achievement, reported in Cell, reveals in unprecedented detail how strands of ribonucleic acid (RNA), cellular molecules that are inherently sticky and prone to misfold, are “chaperoned” by ribosomal proteins into folding properly and forming one of the main components of ribosomes.

Continue reading “In a first for cell biology, scientists observe ribosome assembly in real time” »