Toggle light / dark theme

Autonomous weapons present some unique challenges to regulation. They can’t be observed and quantified in quite the same way as, say, a 1.5-megaton nuclear warhead. Just what constitutes autonomy, and how much of it should be allowed? How do you distinguish an adversary’s remotely piloted drone from one equipped with Terminator software? Unless security analysts can find satisfactory answers to these questions and China, Russia, and the US can decide on mutually agreeable limits, the march of automation will continue. And whichever way the major powers lead, the rest of the world will inevitably follow.


Military scholars warn of a “battlefield singularity,” a point at which humans can no longer keep up with the pace of conflict.

While modern, scientific understanding of this complex network of neurons between our ears really only began in the last few decades, we’ve already learned a lot about the body’s control center — and have been given a lot to think about.

In this episode of The Abstract, we discuss the groundbreaking research in brain-computer technology offering new hope in restoring sensations and treating anxiety.

Our first story is about groundbreaking research in brain-computer interfaces that’s offering new hope for those who have lost their sense of touch. By decoding neural signals from the brain, researchers were able to create movement and sensory perception in paralyzed limbs. Innovations like these in sense-restoring technology could be life-changing for spinal cord patients and make a devastating loss of sensation reversible.

The human brain operates on roughly 20 watts of power (a third of a 60-watt light bulb) in a space the size of, well, a human head. The biggest machine learning algorithms use closer to a nuclear power plant’s worth of electricity and racks of chips to learn.

That’s not to slander machine learning, but nature may have a tip or two to improve the situation. Luckily, there’s a branch of computer chip design heeding that call. By mimicking the brain, super-efficient neuromorphic chips aim to take AI off the cloud and put it in your pocket.

The latest such chip is smaller than a piece of confetti and has tens of thousands of artificial synapses made out of memristors—chip components that can mimic their natural counterparts in the brain.

Every second of every day, countless biochemical reactions take place in our bodies’ cells. The organization of this complex system is the result of billions of years of evolution, fine-tuning our functions since the first primordial organisms.

One such vital reaction is “methylation,” where a —a carbon atom linked to three hydrogen atoms—attaches itself to a target molecule. Methylation is involved in the regulation of everything from DNA to proteins, and it is so vital that it can be found in all .

In a recent paper published in Communications Biology, a team of researchers lead by Jean-Michel Fustin and Hitoshi Okamura from Kyoto University’s Graduate School of Pharmaceutical Sciences has uncovered an intimate connection between methylation and the body’s circadian rhythms: a link that exists even in organisms that don’t traditionally “sleep,” such as bacteria.