Toggle light / dark theme

Utilizing neurotransmitters as a passport into the brain:


Safe and efficient delivery of blood-brain barrier (BBB)–impermeable cargos into the brain through intravenous injection remains a challenge. Here, we developed a previously unknown class of neurotransmitter–derived lipidoids (NT-lipidoids) as simple and effective carriers for enhanced brain delivery of several BBB-impermeable cargos. Doping the NT-lipidoids into BBB-impermeable lipid nanoparticles (LNPs) gave the LNPs the ability to cross the BBB. Using this brain delivery platform, we successfully delivered amphotericin B (AmB), antisense oligonucleotides (ASOs) against tau, and genome-editing fusion protein (−27)GFP-Cre recombinase into the mouse brain via systemic intravenous administration. We demonstrated that the NT-lipidoid formulation not only facilitates cargo crossing of the BBB, but also delivery of the cargo into neuronal cells for functional gene silencing or gene recombination. This class of brain delivery lipid formulations holds great potential in the treatment of central nervous system diseases or as a tool to study the brain function.

The ASTHROS mission will be carried on a big balloon that will be about 150 meters wide — or roughly the size of a football stadium — and will be inflated with helium. A carrier below the balloon will hold the instruments and the telescope. During its flight, it will allow scientists to control the direction of the telescope with precision and download the data in real-time using satellite links.

The ASTHROS team expects that stratospheric winds will help the balloon complete two to three loops around the South Pole in approximately 21 to 28 days. Once complete, the parachute will return the carrier to the ground and the telescope will be recovered and refurbished for future missions.

Get live Stock Prices from BSE, NSE, US Market and latest NAV, portfolio of Mutual Funds, calculate your tax by Income Tax Calculator, know market’s Top Gainers, Top Losers & Best Equity Funds. Like us on Facebook and follow us on Twitter.

We’re going back to Mars, and we’d like you to be our virtual guest on the trip. On July 30, NASA will launch the Mars 2020 Perseverance rover on a seven-month journey to the Red Planet. After landing in Jezero Crater, the robotic astrobiologist and scientist will search for signs that microbes might have lived on Mars long ago, collect soil samples to be returned to Earth on a future mission and pave the way for human exploration beyond the Moon. Perseverance will be accompanied by a helicopter called Ingenuity, the first attempt at powered flight on another world.

Because of the coronavirus pandemic and in the interest of health and safety, NASA can’t invite you to Florida to watch the launch personally. However, there are many ways you can participate virtually:

In mammals, the acquisition of the germline from the soma provides the germline with an essential challenge, the necessity to erase and reset genomic methylation1. In the male germline, RNA-directed DNA methylation silences young active transposable elements (TEs)2–4. The PIWI protein MIWI2 (PIWIL4) and its associated PIWI-interacting RNAs (piRNAs) instruct TE DNA methylation3,5. piRNAs are proposed to tether MIWI2 to nascent TE transcripts; however, the mechanism by which MIWI2 directs de novo TE methylation is poorly understood but central to the immortality of the germline. Here we define the interactome of MIWI2 in foetal gonocytes that are undergoing de novo genome methylation and identify a novel MIWI2-associated factor, SPOCD1, that is essential for young TE methylation and silencing. The loss of Spocd1 in mice results in male-specific infertility but impacts neither piRNA biogenesis nor localization of MIWI2 to the nucleus. SPOCD1 is a nuclear protein and its expression is restricted to the period of de novo genome methylation. We found SPOCD1 co-purified in vivo with DNMT3L and DNMT3A, components of the de novo methylation machinery as well as constituents of the NURD and BAF chromatin remodelling complexes. We propose a model whereby tethering of MIWI2 to a nascent TE transcript recruits repressive chromatin remodelling activities and the de novo methylation apparatus through SPOCD1. In summary, we have identified a novel and essential executor of mammalian piRNA-directed DNA methylation.