Toggle light / dark theme

Carnegie Mellon today showed off new research into the world of robotic navigation. With help from the team at Facebook AI Research (FAIR), the university has designed a semantic navigation that helps robots navigate around by recognizing familiar objects.

The SemExp system, which beat out Samsung to take first place in a recent Habitat ObjectNav Challenge, utilizes machine learning to train the system to recognize objects. That goes beyond simple superficial traits, however. In the example given by CMU, the robot is able to distinguish an end table from a kitchen table, and thus extrapolate in which room it’s located. That should be more straightforward, however, with a fridge, which is both pretty distinct and is largely restricted to a singe room.

The pandemic has accelerated demand for robots and automation. Robots have been regulated to marketing jobs, receptionist duties, and companionship for the elderly. But they’re really starting to come into their own and have practical use. Let’s take a look at how.

Supermarkets started to adopt robots to free up employees who previously spent time taking inventory to focus on disinfecting and sanitizing surfaces and processing deliveries to keep shelves stocked.

These retailers insist the robots are augmenting the work of employees, not replacing them. But as panic buying stops and sales decline in the recession, companies may no longer have a need for these workers.

I hope they get funding.


SAN DIEGO — The average American lives to be around 75 or 80 years old; but if you had an opportunity to slow down the aging process and live an extra couple of decades would you take it? It’s a loaded question, strife with philosophical, religious, and societal considerations. Humans have pondered the possibilities of extended, or even immortal, life for as long as we’ve inhabited this planet. But at the end of the day it’s all just a daydream, right?

Not necessarily, according to new research out of the University of California, San Diego. The study, led by UCSD molecular biologists and bioengineers, produced a groundbreaking discovery regarding the intricacies of cellular aging. In light of their findings, researchers say the notion of “dramatically” extending human life isn’t so farfetched after all.

Each human’s lifespan and personal rate of aging is determined by the aging of their individual cells. Originally, the study’s authors just wanted to investigate if different types of cells age at different speeds based on different stimuli/causes. To that end, they studied aging in the budding yeast Saccharomyces cerevisiae. This provided a suitable model with which to track aging mechanisms of various cell types.

SANTA BARBARA, CALIFORNIA — NASA scientist Philip Lubin is working on perfecting laser technology that could propel a light spacecraft to Mars in as little as three days.

In order for spacecraft to achieve faster speeds, Lubin proposes using an electromagnetic propulsion system that uses light and radiation, rather than the current fuel-based rocket propulsion system.

Photonic propulsion is a theoretical system that uses the energy and momentum from photons to move objects through space. According to Wired, when photons from a laser array reflect off an object, their energy is translated into a push that’s capable of moving objects like a spacecraft.

The system would currently work best with robotic spacecraft. According to Lubin, a robotic probe with a thin reflective sail could travel to Mars in three days. On the other hand, a manned shuttle could reach Mars in a month using the laser-based system. He estimates that lasers could accelerate spacecraft to 30 percent the speed of light, which was previously unheard of.