Human-machine interaction is here, despite technological, security, and ethical challenges. It will shape our future and could define the Fifth Industrial Revolution.

Characterizing the intelligence of biological organisms is challenging yet crucial. This paper demonstrates the capacity of canonical neural networks to autonomously generate diverse intelligent algorithms by leveraging an equivalence between concepts from three areas of cognitive computation: neural network-based dynamical systems, statistical inference, and Turing machines.
Physicist Richard Lieu first explored the idea that gravity could exist without mass—now he’s got a new cosmological model that eschews the need for dark energy.
Human brains make synaptic connections throughout much of childhood, and the brain’s plasticity enables humans to slowly wire them based upon experiences, contrary to how chimpanzees develop. Humans and chimpanzees share 98.8% of the same genes, but scientists have been looking for what drives the unique cognitive and social skills of humans.
A new study, which was published today in Genome Research, that examined brain samples from humans, chimpanzees, and macaques, collected from birth up to the end of their life span, has found some key differences between the expression of genes that control the development and function of synapses, which are the connections between neurons through which information flows.