SketchGraphs is a data set of 15 million sketches from CAD models which researchers say can help make predictions that help humans creating CAD designs.
JAPAN is now ready to scramble jets against any Chinese military aircraft taking off in from a crucial airbase as tensions reach crisis levels between the two.
Extremophiles like the bacterium D. radiodurans that can withstand levels of radiation thousands of times what most animals can, are able to help us make vaccines faster, cheaper and safer. They use special molecular protectors to shield their repair proteins but not their DNA or RNA.
German Sustainable Building Council also highlighted importance of NatRefs in ACs at ATMO/DTI Conference.
Using shading for passive cooling, © Simy27, 2020.
Passive cooling design, as well as natural refrigerant-based air conditioning, are vital to achieving sustainable cooling in buildings, according to Anna Braune, Director of Research and Development at the German Sustainable Building Council (DGNB), a Stuttgart, Germany-based NGO.
Ford Motor has developed a racing version of its upcoming all-electric Mustang Mach-E crossover with 1,400 horsepower and a top speed that’s not street legal.
The company plans to use the prototype vehicle, which it’s calling the Mustang Mach-E 1400, to show off the potential performance of all-electric vehicles as the new crossover begins arriving in dealerships later this year.
“It’s an all-around athlete,” Mark Rushbrook, motorsports director of Ford Performance, told CNBC. He called the vehicle a “learning platform” for the company to utilize aspects of for its future all-electric vehicles.
A technique developed by Miami University associate professors of chemistry and biochemistry Dominik Konkolewicz and Rick Page may help enable more rapid and efficient development of new materials for use in pharmaceuticals, biofuels, and other applications.
Konkolewicz’s and Page’s technique uses nuclear magnetic resonance (NMR) technology to illuminate how proteins and synthetic polymers interact in chemical substances known as bioconjugates.
Scientists at Columbia University in New York screened antibodies from 40 Covid-19 patients and identified 61 types from five individuals that effectively wiped out coronavirus. Among them were nine that displayed “exquisite potency” for neutralising the pathogen.
Tests on cells showed that the antibodies killed off the virus, while experiments with hamsters revealed that an infusion of one of the more potent antibodies protected the animals from disease. “It shut off infectious virus completely in the lung tissue of the hamsters we treated,” said David Ho, a professor of medicine at Columbia who led the research.
“We specifically isolated very potent antibodies that can be mass produced and then administered,” Ho said. “We would assume that these could be used to prevent or treat Sars-Cov-2. We’d be looking to treat early in the course of infection, particularly those at risk of developing severe disease such as the elderly and those with underlying illness.”
(Nanowerk News) Scientists in Australia and the United States have been able to ‘upconvert’ low energy light into high energy light, which can be captured by solar cells, in a new way, with oxygen the surprise secret ingredient. The results are published in Nature Photonics (“Photochemical upconversion of near-infrared light from below the silicon bandgap”).
Scientists in Australia and the United States have been able to ‘upconvert’ low energy light into high energy light, which can be captured by solar cells, in a new way, with oxygen the surprise secret ingredient.
The results are published in Nature Photonics (“Photochemical upconversion of near-infrared light from below the silicon bandgap”).
While the approach’s efficiencies are relatively low and more work is needed to achieve commercialisation, the research is an exciting development, according to senior author Professor Tim Schmidt from the ARC Centre of Excellence in Exciton Science and UNSW Sydney.
Did you know there was a natural treatment for herpes “that has no treatment”. People have been treating disease for centuries. Just because something is not approved does not mean it does not work, it only means it is not approved. Even corruption can stall the approval process.
TMR5 (ZedupexTM) is a product of a Kenyan medicinal plant, prepared as a lyophilized extract and a cream. The products have been evaluated for preclinical safety and efficacy in suitable in vitro and in vivo systems of herpes infections. Herpes is a viral infection affecting over 60% of the sub-Saharan Africa young adult population. It is caused by two similar viruses, HSV-1 and HSV-2 which share 50% gene sequence homology. The infection in a major cause of genital ulcer disease, associated with increased risks of HIV acquisition and transmission. The aim is to develop TMR5 as an alternative anti-herpes agent, this being necessitated by increased resistance to available drugs and the cost of the drug of choice, acyclovir, in the region. Using the trypan blue exclusion test, plaque inhibition and viral yield reduction assays for assessment of cytotoxicity (CC50) and efficacy (EC50), and Mice and guinea pig cutaneous and genital HSV infection models respectively following oral and topical treatments, TMR5 exhibited no cytotoxicity in mammalian cell lines with a wide therapeutic index (CC50 ≥ 58.5 ± 4.6µg/ml). An EC50 of ≤ 14.7 ± 3.7µg/ml for both wild type and resistant strains of HSV was realised in plaque and viral yield assays. Oral (250 mg/kg) and topical (10% cream) administrations exhibited significant delay in onset of infections, hindered progression of infection to lethal forms with increased mean survival times and low mortality in both mice and guinea pig models. No acute toxicity has been realised at the therapeutic concentrations. TMR5 has demonstrated a high potential as an anti-herpes agent and arrangements are presently underway to evaluate its efficacy and safety in human clinical trials. A pilot production scheme supported by the National Commission for Science, Technology and Innovation (NCSTI) of Kenya has been undertaken as means of developing TMR5 as an alternative management therapy for herpes infections.