Toggle light / dark theme

An analysis of more than 17 million people in England — the largest study of its kind, according to its authors — has pinpointed a bevy of factors that can raise a person’s chances of dying from COVID-19, the disease caused by the coronavirus.

The paper, published Wednesday in Nature, echoes reports from other countries that identify older people, men, racial and ethnic minorities, and those with underlying health conditions among the more vulnerable populations.

“This highlights a lot of what we already know about COVID-19,” said Uchechi Mitchell, a public health expert at the University of Illinois at Chicago who was not involved in the study. “But a lot of science is about repetition. The size of the study alone is a strength, and there is a need to continue documenting disparities.”

ANCHORAGE, Alaska — A company wants to use an advanced balloon to fly customers from Earth’s surface in Alaska to the highest reaches of the planet’s atmosphere.

Florida-based startup firm Space Perspective plans to use the Pacific Spaceport Complex in Kodiak to serve as one of the launch sites for the vehicle, called the Spaceship Neptune, The Anchorage Daily News reported Sunday.

The balloon rides will be manned by a flight crew taking eight passengers in a pressurized capsule suspended beneath a hydrogen balloon the size of a football stadium.

Most cells in your body come with two genetic libraries; one in the nucleus, and the other inside structures called mitochondria — also known as the ‘powerhouses of the cell’.

Until now, we’ve only had a way to make changes to one.

A combined effort by several research teams in the US has led to a process that could one day allow us to modify the instructions making up the cell’s ‘other’ genome, and potentially treat a range of conditions that affect how we power our bodies.

SoftBank CEO Masayoshi Son’s Vision Fund has been impossible to ignore since its inception, pumping billions upon billions of dollars into tech companies like WeWork and Uber. Now, a string of high-profile losses and the coronavirus pandemic have put the fund deeply in the red. Bloomberg journalists Pavel Alpeyev, Sarah McBride and Tim Culpan break down the controversial investment strategies that have led to this critical moment for Son’s unprecedented fund.

Video by vicky feng and alan jeffries

#SoftBank #Epics #Business

——-

Dimensionality reduction is an unsupervised learning technique.

Nevertheless, it can be used as a data transform pre-processing step for machine learning algorithms on classification and regression predictive modeling datasets with supervised learning algorithms.

There are many dimensionality reduction algorithms to choose from and no single best algorithm for all cases. Instead, it is a good idea to explore a range of dimensionality reduction algorithms and different configurations for each algorithm.

Spiders produce amazingly strong and lightweight threads called draglines that are made from silk proteins. Although they can be used to manufacture a number of useful materials, getting enough of the protein is difficult because only a small amount can be produced by each tiny spider. In a new study published in Communications Biology, a research team led by Keiji Numata at the RIKEN Center for Sustainable Resource Science (CSRS) reported that they succeeded in producing the spider silk using photosynthetic bacteria. This study could open a new era in which photosynthetic bio-factories stably output the bulk of spider silk.

In addition to being tough and lightweight, silks derived from arthropod species are biodegradable and biocompatible. In particular, spider silk is ultra-lightweight and is as tough as steel. “Spider silk has the potential to be used in the manufacture of high-performance and durable materials such as tear-resistant clothing, automobile parts, and aerospace components,” explains Choon Pin Foong, who conducted this study. “Its biocompatibility makes it safe for use in biomedical applications such as drug delivery systems, implant devices, and scaffolds for tissue engineering.” Because only a trace amount can be obtained from one spider, and because breeding large numbers of spiders is difficult, attempts have been made to produce artificial spider silk in a variety of species.

The CSRS team focused on the marine photosynthetic bacterium Rhodovulum sulfidophilum. This bacterium is ideal for establishing a sustainable bio-factory because it grows in seawater, requires carbon dioxide and nitrogen in the atmosphere, and uses solar energy, all of which are abundant and inexhaustible.