Toggle light / dark theme

In the past decade, lab-grown blobs of human brain tissue began making news headlines, as they ushered in a new era of scientific discovery and raised a slew of ethical questions.

These blobs — scientifically known as brain organoids, but often called “minibrains” in the news — serve as miniature, simplified models of full-size human brains. These organoids can potentially be useful in basic research, drug development and even computer science.

Some years ago, when he was still living in southern California, neuroscientist Christof Koch drank a bottle of Barolo wine while watching The Highlander, and then, at midnight, ran up to the summit of Mount Wilson, the 5,710-foot peak that looms over Los Angeles.

After an hour of “stumbling around with my headlamp and becoming nauseated,” as he later described the incident, he realized the nighttime adventure was probably not a smart idea, and climbed back down, though not before shouting into the darkness the last line of William Ernest Henley’s 1,875 poem “Invictus”: “I am the master of my fate / I am the captain of my soul.”

Mitochondria in brain cells frequently insert their DNA into the nucleus, potentially impacting lifespan, as those with more insertions were found to die earlier. Stress appears to accelerate this process, suggesting a new way mitochondria influence health beyond energy production.

As direct descendants of ancient bacteria, mitochondria have always been a little alien. Now a study shows that mitochondria are possibly even stranger than we thought.

Mitochondria in our brain cells frequently fling their DNA into the nucleus, the study found, where the DNA becomes integrated into the cells’ chromosomes. And these insertions may be causing harm: Among the study’s nearly 1,200 participants, those with more mitochondrial DNA insertions in their brain cells were more likely to die earlier than those with fewer insertions.

Dark matter remains one of the most enigmatic components of our universe. In this episode of Cosmology 101, we explore the evidence for dark matter and its critical role in shaping the cosmos. From galaxy rotations to cosmic web structures, discover how dark matter’s invisible hand influences the universe’s evolution and our understanding of fundamental physics.

Join Katie Mack, Perimeter Institute’s Hawking Chair in Cosmology and Science Communication, on an incredible journey through the cosmos in our new series, Cosmology 101.

Sign up for our newsletter and download exclusive cosmology posters at: https://landing.perimeterinstitute.ca

Follow the edge of theoretical physics on our social media: