Toggle light / dark theme

The researchers conducted a series of government-funded surveys from 2011 to 2020 and located potentially high-yield deposits of various essential industrial minerals from nickel to rare earths, according to a paper published in the Chinese-language Bulletin of Mineralogy, Petrology and Geochemistry last week.


Chinese researchers have spent the last decade mapping the globe’s ocean floors looking for potential mineral deposits.

This is the THIRD PART of the interview with Harold Katcher in Modern Healthspan YouTube channel.


Dr. Harold Katcher is a professor of Biology at the University of Maryland. He has been a pioneer in the field of cancer research, in the development of modern aspects of gene hunting and sequencing. He carries expertise in bioinformatics, chronobiology, and biotechnology. Dr. Katcher is currently working in the capacity of Chief Technical Officer at Nugenics Research exploring rejuvenation treatments in mammals.
In May 2020 there was a paper published on biorxiv about the rejuvenation of rats by over 50%. We did a review of the paper which you can find linked to above. In this interview series we talk with Dr. Harold Katcher, one of the main authors of the paper about the experiment, the steps to get validation, commercialization and how the results fit into his theories of aging.

In this video we talk about the next steps towards commercialization and how the treatment that is being developed from this research will be made available. Dr. Katcher is very optimistic with a view that the treatment should be on the market within a few years.

The paper can be found here https://www.biorxiv.org/content/10.1101/2020.05.07.082917v1.full.

If you would like to support our channel, we’d love a coffee…thank you!

University of Stuttgart researchers developed a particle-based imaging approach that enables the spatially and temporally resolved investigation of vastly different systems such as ground-state samples, Rydberg ensembles, or cold ions immersed in quantum gases.

The microscope features an excellent time resolution allowing for both the study of dynamic processes and 3D imaging. In contrast to most quantum gas microscopes, this imaging scheme offers an enormous depth of field and is, therefore, not restricted to two-dimensional systems.

The researchers plan to use their new and powerful tool to extend our studies of cold ion-atom hybrid systems and intend to push the collision energies in these systems to the ultracold regime. Using Rydberg molecules to initialize ion-atom collisions, they envision the imaging of individual scattering events taking place in the quantum regime.