Toggle light / dark theme

International team develops a new method to determine the origin of stardust in meteorites.

Analysis of meteorite content has been crucial in advancing our knowledge of the origin and evolution of our solar system. Some meteorites also contain grains of stardust. These grains predate the formation of our solar system and are now providing important insights into how the elements in the universe formed.

Working in collaboration with an international team, nuclear physicists at the U.S. Department of Energy’s (DOE’s) Argonne National Laboratory have made a key discovery related to the analysis of “presolar grains” found in some meteorites. This discovery has shed light on the nature of stellar explosions and the origin of chemical elements. It has also provided a new method for astronomical research.

Physicists have long sought to understand the irreversibility of the surrounding world and have credited its emergence to the time-symmetric, fundamental laws of physics. According to quantum mechanics, the final irreversibility of conceptual time reversal requires extremely intricate and implausible scenarios that are unlikely to spontaneously occur in nature. Physicists had previously shown that while time-reversibility is exponentially improbable in a natural environment—it is possible to design an algorithm to artificially reverse a time arrow to a known or given state within an IBM quantum computer. However, this version of the reversed arrow-of-time only embraced a known quantum state and is therefore compared to the quantum version of pressing rewind on a video to “reverse the flow of time.”

In a new report now published in Communications Physics, Physicists A.V. Lebedev and V.M. Vinokur and colleagues in materials, physics and advanced engineering in the U.S. and Russia, built on their previous work to develop a technical method to reverse the temporal evolution of an arbitrary unknown . The technical work will open new routes for general universal algorithms to send the temporal evolution of an arbitrary system backward in time. This work only outlined the mathematical process of time reversal without experimental implementations.

SpaceX is manufacturing its Starlink satellites at an unprecedented rate for the space industry, analysts say, as the company dives headlong into building a space-based global internet service.

Elon Musk’s company told the Federal Communications Commission in a presentation last month that its Starlink unit is “now building 120 satellites per month” and has “invested over $70 million developing and producing thousands of consumer user terminals per month.”

“Invested hundreds of millions of dollars in Starlink to date,” the SpaceX presentation added.

Heart regeneration, a relatively new field of biology, is one of the most active and controversial areas of biomedical research. The potential impact of successful human heart regeneration therapeutics cannot be overstated, given the magnitude and prognosis of heart failure. However, the regenerative process is highly complex, and premature claims of successful heart regeneration have both fueled interest and created controversy. The field as a whole is now in the process of course correction, and a clearer picture is beginning to emerge. Despite the challenges, fundamental principles in developmental biology have provided a framework for hypothesis-driven approaches toward the ultimate goal of adult heart regeneration and repair. In this review, we discuss the current state of the field and outline the potential paths forward toward regenerating the human myocardium.

Cardiovascular diseases have long been the leading cause of death in both industrialized and developing countries. This broad term includes mortality from both vascular and myocardial disease and has been heavily driven by mortality from acute vascular events such as myocardial infarction. This epidemic of vascular death has led to important advances in both basic and clinical research, with significant results. The rates of both myocardial infarction and associated fatalities have been steadily declining (Yeh et al., 2010) thanks to advances in risk-factor management, as well as advanced therapies for coronary revascularization. Unfortunately, myocardial damage from non-lethal cardiac events has contributed to the increased prevalence of cardiomyopathy (Khera et al., 2017; Yeh et al., 2010).

Cardiomyopathy, or weakening of the heart muscle, is a devastating progressive disease with a prognosis worse than that of many malignancies (Mosterd and Hoes, 2007). Decades of advances in understanding the myocardial response to injury have led to the development of safe and effective drugs that slow the progression of cardiomyopathy and even restore function in some reversible cases where there is no significant myocyte loss (Yancy et al., 2017). These drugs mainly target sympathetic activation, afterload, and fibrosis pathways, which are responsible for the progressive nature of the disease after an initial insult. However, to date we have no answer to the disease’s central underlying basis, which is cardiomyocyte loss. The notion that it might be possible to rebuild the cardiac muscle, or to regenerate the myocardium, after injury has sparked significant interest over the past two decades, and it has created a battleground for competing theories and ideas.