Menu

Blog

Page 7601

Sep 6, 2019

Scientists couple magnetization to superconductivity for quantum discoveries

Posted by in categories: computing, quantum physics

Quantum computing promises to revolutionize the ways in which scientists can process and manipulate information. The physical and material underpinnings for quantum technologies are still being explored, and researchers continue to look for new ways in which information can be manipulated and exchanged at the quantum level.

Sep 6, 2019

Measuring changes in magnetic order to find ways to transcend conventional electronics

Posted by in categories: futurism, materials

Researchers around the world are constantly looking for ways to enhance or transcend the capabilities of electronic devices, which seem to be reaching their theoretical limits. Undoubtedly, one of the most important advantages of electronic technology is its speed, which, albeit high, can still be surpassed by orders of magnitude through other approaches that are not yet commercially available.

A possible way of surpassing traditional electronics is through the use of (AFM) materials. The electrons of AFM materials spontaneously align themselves in such a way that the overall magnetization of the material is practically zero. In fact, the order of an AFM material can be quantified in what is known as the ‘order parameter.’ Recent studies have even shown that the AFM order parameter can be ‘switched’ (that is, changed from one known value to another, really fast) using light or , which means that AFM materials could become the building blocks of future electronic devices.

However, the dynamics of the order-switching process are not understood because it is very difficult to measure the changes in the AFM order parameter in real time with high resolution. Current approaches rely on measuring only certain phenomena during AFM order switching and trying to obtain the full picture from there, which has proven to be unreliable for understanding other more intricate phenomena in detail. Therefore, a research team lead by Prof. Takuya Satoh from Tokyo Tech and researchers from ETH Zurich, developed a method for thoroughly measuring the changes in the AFM order of an YMnO3 crystal induced through optical excitation (that is, using a laser).

Sep 6, 2019

AI Network Can Tell Age, Gender From Standard ECG

Posted by in categories: biotech/medical, health, robotics/AI

NEW YORK (Reuters Health) — A convolutional neural network trained through deep learning can accurately predict a person’s age and gender using only standard 12-lead ECG signals, researchers report.

“Our standard diagnostic tools may have far more information behind them than we’ve come to expect throughout standard approaches to diagnostic interpretation,” said Dr. Suraj Kapa from Mayo Clinic College of Medicine, in Rochester, Minnesota.

“Between this study and other prior studies showing that we can predict likelihood of having atrial fibrillation from a normal sinus ECG or the presence of a low ejection fraction, AI-enabled ECG analysis may offer new, rapid, and cost-effective insights into human health well beyond what we could have anticipated in the last two centuries since the ECG was first developed,” he told Reuters Health by email.

Sep 6, 2019

“A pessimistic Guide to Anti-Aging Research” Episode 8 “Mutations”

Posted by in category: life extension

Click on photo to start video.

This episode covers mechanisms of aging, part 1 — mutations.

Sep 6, 2019

Sum of three cubes for 42 finally solved—using real life planetary computer

Posted by in categories: computing, information science

O.o.


Hot on the heels of the ground-breaking ‘Sum-Of-Three-Cubes’ solution for the number 33, a team led by the University of Bristol and Massachusetts Institute of Technology (MIT) has solved the final piece of the famous 65-year-old maths puzzle with an answer for the most elusive number of all—42.

Continue reading “Sum of three cubes for 42 finally solved—using real life planetary computer” »

Sep 6, 2019

First hint that body’s ‘biological age’ can be reversed

Posted by in categories: biotech/medical, genetics

In a small trial, drugs seemed to rejuvenate the body’s ‘epigenetic clock’, which tracks a person’s biological age.

Sep 6, 2019

Building Quantum Skills With Tools For Developers, Researchers and Educators

Posted by in categories: computing, education, quantum physics

Our team is committed to making quantum sciences more approachable by investing heavily in the education to support this growing community and establishing the emerging technology as the next generation of computing. We need more students, educators, developers, and domain experts with “quantum ready” skills. This is why our team is proud to release educational resources and tools, while also increasing the capacity and capability of our IBM Q systems.

Learn Quantum Computing Using Qiskit - textbook title
We are rolling out new systems and a new feature that allows for reserving time on an IBM Q system through the IBM Q Experience. This will initially be available to members of the IBM Q Network. Members will be able to reserve blocks of uninterrupted time for their users to experiment and test ideas using our advanced systems and software. Moreover, educators and academic members can take advantage of scheduling time to dynamically demonstrate quantum computing concepts on our hardware in the classroom. All the while, students can use the IBM Q Experience to follow along directly from a web browser without any additional installation required.

Continue reading “Building Quantum Skills With Tools For Developers, Researchers and Educators” »

Sep 6, 2019

How the United States Is Developing Post-Quantum Cryptography

Posted by in categories: computing, encryption, government, information science, internet, quantum physics, security

When practical quantum computing finally arrives, it will have the power to crack the standard digital codes that safeguard online privacy and security for governments, corporations, and virtually everyone who uses the Internet. That’s why a U.S. government agency has challenged researchers to develop a new generation of quantum-resistant cryptographic algorithms.

Many experts don ’t expect a quantum computer capable of performing the complex calculations required to crack modern cryptography standards to become a reality within the next 10 years. But the U.S. National Institute of Standards and Technology (NIST) wants to stay ahead by getting new cryptographic standards ready by 2022. The agency is overseeing the second phase of its Post-Quantum Cryptography Standardization Process to narrow down the best candidates for quantum-resistant algorithms that can replace modern cryptography.

“Currently intractable computational problems that protect widely-deployed cryptosystems, such as RSA and Elliptic Curve-based schemes, are expected to become solvable,” says Rafael Misoczki, a cryptographer at the Intel Corporation and a member of two teams (named Bike and Classic McEliece) involved in the NIST process. “This means that quantum computers have the potential to eventually break most secure communications on the planet.”

Sep 6, 2019

USB4 is coming soon and will (mostly) unify USB and Thunderbolt

Posted by in category: futurism

Thankfully, USB4’s changes are internal only—the connectors are still USB-C.

Sep 6, 2019

James Strole: Advocacy, Education, Awareness About Radical Life Extension

Posted by in categories: bioengineering, biotech/medical, education, life extension, quantum physics

Ira Pastor, ideaXme longevity and aging ambassador and founder of Bioquark, interviews James Strole, Co-Founder and Co-Director of People Unlimited and Director of the Coalition For Radical Life Extension.

Ira Pastor Comments:

Continue reading “James Strole: Advocacy, Education, Awareness About Radical Life Extension” »