Everybody has questions about space and what’s beyond the horizon. Our mission is to be the answer.
Welcome to the United States Air Force. Learn about great opportunities for enlisted airmen, officers and health care professionals.
Everybody has questions about space and what’s beyond the horizon. Our mission is to be the answer.
Welcome to the United States Air Force. Learn about great opportunities for enlisted airmen, officers and health care professionals.
The proposed mechanism of action described in the claim that 5G millimeter waves can generate SARS-CoV-2 in human cells violates fundamental principles of biology. Scientific evidence does not support a causal relationship between 5G and COVID-19. Many of the regions with the highest COVID-19 infection rates, such as Brazil, do not have 5G coverage, providing further evidence that 5G is not associated with the pandemic.
FULL CLAIM: 5G generates coronavirus in human skin cells
Scientists from 4 different Swiss universities describe how adhesion molecules activate autoaggressive immune cells and drive their infiltration in the nervous system in a model of multiple sclerosis.
Click to read the paper published in Frontiers in Immunology: https://fro.ntiers.in/tp1U
In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), myelin-specific T cells are activated in the periphery and differentiate in T helper (Th) 1 and Th17 effector cells, which cross the blood-brain barrier (BBB) to reach the central nervous system (CNS), where they induce neuroinflammation. Here, we explored the role of intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 in the activation of naïve myelin-specific T cells and in the subsequent migration of differentiated encephalitogenic Th1 and Th17 cells across the BBB in vitro and in vivo. While on antigen-presenting cells ICAM-1, but not ICAM-2 was required for the activation of naïve CD4+ T cells, endothelial ICAM-1 and ICAM-2 mediated both Th1 and Th17 cell migration across the BBB. ICAM-1/-2-deficient mice developed ameliorated typical and atypical EAE transferred by encephalitogenic Th1 and Th17 cells, respectively. Our study underscores important yet cell-specific contributions for ICAM-1 and ICAM-2 in EAE pathogenesis.
Multiple sclerosis (MS) is considered an autoimmune inflammatory demyelinating disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE), a prototypic animal model for MS, mimics many aspects of the acute inflammatory phase of the human disease (1). In EAE, naïve myelin-reactive CD4+ T cells are activated and differentiated in peripheral lymphoid tissue into encephalitogenic Th1 or Th17 cells, which travel in the blood circulation to the CNS. After crossing the blood-brain barrier (BBB) they next infiltrate in the CNS parenchyma, leading to clinical manifestation of the disease (2). EAE can be actively induced by immunization with CNS myelin antigens emulsified in complete Freund’s adjuvant (aEAE) or by injection of myelin-reactive CD4+ T cells into syngeneic naïve recipients (tEAE) (3, 4).
France is deploying two Rafale fighter jets and a naval frigate in the eastern Mediterranean because of tensions between Greece and Turkey.
French President Emmanuel Macron has urged Turkey to halt oil and gas exploration in disputed waters in the area. A Turkish survey ship began such a mission on Monday, angering Greece.
Mr Macron told Greek Prime Minister Kyriakos Mitsotakis that the French military would monitor the situation.
The UK, US and Canada say state-backed hackers tried to steal coronavirus vaccine research.
A global research team has been able to transform brackish water and seawater into safe, clean drinking water in less than 30 minutes using metal-organic frameworks (MOFs) and sunlight.
In a discovery that could provide potable water for millions of people across the world, researchers were not only able to filter harmful particles from water and generate 139.5L of clean water per kilogram of MOF per day, but also perform this task in a more energy-efficient manner than current desalination practices.
The World Health Organization suggests good quality drinking water should have a total dissolved solid (TDS) of 600 parts per million (ppm). Researchers were able to achieve a TDS of 500 ppm in just 30 minutes and regenerate the MOF for reuse in four minutes under sunlight.
Fired brick is a universal building material, produced by thousand-year-old technology, that throughout history has seldom served any other purpose. Here, we develop a scalable, cost-effective and versatile chemical synthesis using a fired brick to control oxidative radical polymerization and deposition of a nanofibrillar coating of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). A fired brick’s open microstructure, mechanical robustness and ~8 wt% α-Fe2O3 content afford an ideal substrate for developing electrochemical PEDOT electrodes and stationary supercapacitors that readily stack into modules. Five-minute epoxy serves as a waterproof case enabling the operation of our supercapacitors while submerged underwater and a gel electrolyte extends cycling stability to 10,000 cycles with ~90% capacitance retention.
Most of the time, a material’s color stems from its chemical properties. Different atoms and molecules absorb different wavelengths of light; the remaining wavelengths are the “intrinsic colors” that we perceive when they are reflected back to our eyes.
So-called “structural color” works differently; it’s a property of physics, not chemistry. Microscopic patterns on some surfaces reflect light in such a way that different wavelengths collide and interfere with one another. For example, a peacock’s feathers are made of transparent protein fibers that have no intrinsic color themselves, yet we see shifting, iridescent blue, green and purple hues because of the nanoscale structures on their surfaces.
As we become more adept at manipulating structure at the smallest scales, however, these two types of color can combine in even more surprising ways. Penn Engineers have now developed a system of nanoscale semiconductor strips that uses structural color interactions to eliminate the strips’ intrinsic color entirely.
Scientists at Stockholm University have discovered that water can exhibit a similar behavior to that of a liquid crystal when illuminated with laser light. This effect originates by the alignment of water molecules, which exhibit a mixture of low- and high-density domains that are more or less prone to alignment. The results, reported in Physics Review Letters, are based on a combination of experimental studies using X-ray lasers and molecular simulations.
Liquid crystals were considered a mere scientific curiosity when they were first discovered in 1888. Over 100 years later, they are one of the most widely used technologies, present in digital displays (LCDs) of watches, TVs and computer screens. Liquid crystals work by applying an electric field, which makes the neighboring molecules of a liquid align, in a way that resembles a crystal. Water too can be distorted towards a liquid crystal, when illuminated with laser light. It is known that the electric field of the laser can align the water molecules for less than a billionth of a second. Can this discovery have future technological applications?
An international team of researchers at the Physics Department of Stockholm University carried out experiments at Japan’s X-ray Free-electron laser SACLA and probed for the first time the dynamics of transiently oriented molecules using X-ray pulses. This technique, relies on aligning the molecules with a laser pulse (with wavelength λ = 800 nm) and probing the alignment with X-ray pulses, which allow to see in real time the changes in the structure on a molecular level. By varying the time between the laser and the X-ray pulses, the researchers were able to resolve the aligned state, which lives only for 160 fs.
Israel says the attack was thwarted, but a cybersecurity firm says it was successful. Some officials fear that classified data stolen by North Korea could be shared with Iran.