Toggle light / dark theme

Glycerol, used in the past as antifreeze for cars, is produced by a range of organisms from yeasts to vertebrates, some of which use it as an osmoprotectant—a molecule that prevents dangerous water loss in salty environments—while others use it as an antifreeze. Here, scientists from the University of Nevada and Miami University in Ohio show that two species of the single-celled green algae Chlamydomonas from Antarctica, called UWO241 and ICE-MDV, produce high levels of glycerol to protect them from osmotic water loss, and possibly also from freezing injury. Presently, only one other organism, an Arctic fish, is known to use glycerol for both purposes. Both species synthesize glycerol with enzymes encoded by multiple copies of a recently discovered ancient gene family. These results, published today in the open-access journal Frontiers in Plant Science, illustrate the importance of adaptations that allow life to not only survive but to thrive in extreme habitats.

The researchers collected both Chlamydomonas species from depths of 13 to 17 m, a region with a steep salinity gradient, in Lake Bonney, a permanently ice-covered lake in the McMurdo Dry Valleys of Victoria Land, Antarctica. Previously, they showed that both species are remarkably adapted to their extreme habitat, with a photosynthetic apparatus adapted to cold, saline, and light-poor conditions, novel proteins, more fluid cell membranes that function at low temperatures, and ice-binding proteins that protect against freeze-thaw injury.

“Our overall goal is to understand how microorganisms survive in extreme environments. The Chlamydomonas species of Lake Bonney are well-suited for such studies because they are exposed to many extremes, including low light, low temperature, oxidative stress, and high salinity. The present results are the first to show that glycerol production by microorganisms, which is well-known in warm, salty environments, is also important in polar regions,” says corresponding author Dr. James Raymond, Adjunct Research Professor at the School of Life Sciences, University of Nevada, Las Vegas, USA.

For the past 70 years, most of humanity’s rockets have been chemical rockets- with either liquid or solid fuel. However, it may be possible for future rockets to use different fuel sources.

Discord Link: https://discord.gg/brYJDEr
Patreon link: https://www.patreon.com/TheFuturistTom
Please follow our instagram at: https://www.instagram.com/the_futurist_tom
For business inquires, please contact [email protected]

In this video, Elon Musk demonstrates a prototype brain–computer interface chip – implanted in a pig – that his company, Neuralink, has been working on. The device could one day be used by humans to augment their abilities.

Founded in 2016, the Neuralink Corporation remained highly secretive about its work until July 2019, when Musk presented his concept at the California Academy of Sciences. It emerged that he planned to create brain–machine interfaces (BMIs) not only for diseased or injured patients, but also healthy individuals who might wish to enhance themselves.

Yesterday, in a livestream event on YouTube, Musk unveiled a pig called Gertrude with a coin-sized chip in her brain. Simpler and smaller than the original revealed last year, the read/write link device can nevertheless pack 1,024 channels with megabit wireless data rate and all-day battery life. This latest prototype – version 0.9 – has now been approved as an FDA breakthrough device, allowing it to be used in limited human trials under the US federal guidelines for testing medical devices. The chip is removable, Musk explained, as he showed another pig called Dorothy, who no longer had the implant and was healthy, happy and indistinguishable from a normal pig.

Summary: Neuroimaging predicts whether a person with OCD will respond to stress-reduction therapy or exposure-based therapy best. Analyzing brain activity may help to provide tailored treatments to individuals suffering from OCD.

Source: Michigan Medicine

New research could improve the odds that people with obsessive-compulsive disorder will receive a therapy that really works for them – something that eludes more than a third of those who currently get OCD treatment.

Circa 2017


Imagine materials strong enough to use in building airplanes or motor cars, yet are literally lighter than air. Soon, that may not be so hard to do because a team of researchers from MIT and Lawrence Livermore National Laboratory (LLNL) have developed new ultra-lightweight materials that are as light as aerogel, but 10,000 times stiffer, and may one day revolutionize aerospace and automotive designs.

Aerogels are incredibly light, so light that the record holder, aerographene, boasts a density of just 0.16 mg/cm3. Currently, aerogels are used for insulation, tennis racquets, as a means of controlling oil spills, and were used on the NASA Stardust mission to collect samples from a comet’s tail. Unfortunately, despite its seemingly ephemeral nature, its very much a solid and will shatter if pressed hard enough, so its use is limited.

The new materials developed by the MIT/LLNL team aren’t aerogels, but are metamaterials. That is, artificial materials with properties that aren’t found in nature. The idea is to structure it, so that it has the lightness of aerogel, but is much stronger. The strength of the new materials comes from their geometric structure, not their chemical composition.