Toggle light / dark theme

A research collaboration between Kumamoto University and Nagasaki University in Japan has found that components leaking from broken muscle fibers activate “satellite” muscle stem cells. While attempting to identify the proteins that activate satellite cells, they found that metabolic enzymes, such as GAPDH, rapidly activated dormant satellite cells and accelerated muscle injury regeneration. This is a highly rational and efficient regeneration mechanism in which the damaged muscle itself activates the satellite cells that begin the regeneration process.

Skeletal is made up of bundles of contracting muscle fibers and each is surrounded by —muscle stem cells that can produce new muscle fibers. Thanks to the work of these cells, muscle fibers can be regenerated even after being bruised or torn during intense exercise. Satellite cells also play essential roles in muscle growth during developmental stages and muscle hypertrophy during strength training. However, in refractory muscle diseases like and age-related muscular fragility (sarcopenia), the number and function of satellite cells decreases. It is therefore important to understand the regulatory mechanism of satellite cells in muscle regeneration therapy.

In mature skeletal muscle, satellite cells are usually present in a dormant state. Upon stimulation after muscle injury, satellite cells are rapidly activated and proliferate repeatedly. During the subsequent myogenesis, they differentiate and regenerate muscle fibers by fusing with existing muscle fibers or with together. Of these three steps (satellite cell activation, proliferation, and muscle differentiation), little is known about how the first step, activation, is induced.

Could make awesome computers.


Materials scientists who work with nano-sized components have developed ways of working with their vanishingly small materials. But what if you could get your components to assemble themselves into different structures without actually handling them at all?

Verner Håkonsen works with cubes so tiny that nearly 5 billion of them could fit on a pinhead.

He cooks up the cubes in the NTNU NanoLab, in a weird-looking glass flask with three necks on the top using a mixture of chemicals and special soap.

Are we in a simulation?


In an influential 2003 paper, University of Oxford philosopher Nick Bostrom laid out the possibility that our reality is a computer simulation dreamed up by a highly advanced civilization. In the paper, he argued that at least one of three propositions must be true:

  1. Civilizations usually go extinct before developing the capability of creating reality simulations.
  2. Advanced civilizations usually have no interest in creating reality simulations.
  3. We’re almost certainly living inside a computer simulation.

I am for Ethical Robots what about you?


Every time we talk to Alexa, Siri, Google, or Cortana, we are building the brains of the robot. Human machine relationships increase and robot ethics are needed for the coming age of automation, they are simply not adequate for the nuanced capabilities and behaviors we are beginning to see in today’s devices.

The world’s small-scale farmers now can see a path to solving global hunger over the next decade, with solutions—such as adopting climate-resilient crops through improving extension services—all culled rapidly via artificial intelligence from more than 500,000 scientific research articles.

The results are synthesized in 10 new research papers—authored by 77 scientists, researchers and librarians in 23 countries—as part of Ceres2030: Sustainable Solutions to End Hunger. The project is headquartered at Cornell University, with partners from the International Food Policy Research Institute (IFPRI) and the International Institute for Sustainable Development (IISD).

The papers were published concurrently on Oct. 12 in four journals— Nature Plants, Nature Sustainability, Nature Machine Intelligence and Nature Food —and assembled in a comprehensive package online: Sustainable Solutions to End Hunger.