Toggle light / dark theme

Three-dimensional (3D) nanostructured materials—those with complex shapes at a size scale of billionths of a meter—that can conduct electricity without resistance could be used in a range of quantum devices. For example, such 3D superconducting nanostructures could find application in signal amplifiers to enhance the speed and accuracy of quantum computers and ultrasensitive magnetic field sensors for medical imaging and subsurface geology mapping. However, traditional fabrication tools such as lithography have been limited to 1-D and 2-D nanostructures like superconducting wires and thin films.

Now, scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, Columbia University, and Bar-Ilan University in Israel have developed a platform for making 3D superconducting nano-architectures with a prescribed organization. As reported in the Nov. 10 issue of Nature Communications, this platform is based on the self-assembly of DNA into desired 3D shapes at the nanoscale. In DNA self-assembly, a single long strand of DNA is folded by shorter complementary “staple” strands at specific locations—similar to origami, the Japanese art of paper folding.

“Because of its structural programmability, DNA can provide an assembly platform for building designed nanostructures,” said co-corresponding author Oleg Gang, leader of the Soft and Bio Nanomaterials Group at Brookhaven Lab’s Center for Functional Nanomaterials (CFN) and a professor of chemical engineering and of applied physics and at Columbia Engineering. “However, the fragility of DNA makes it seem unsuitable for functional device fabrication and nanomanufacturing that requires inorganic materials. In this study, we showed how DNA can serve as a scaffold for building 3D nanoscale architectures that can be fully “converted” into inorganic materials like superconductors.”

The year is coming to a close and it’s safe to say Elon Musk’s prediction that his company would field one million “robotaxis” by the end of 2020 isn’t going to come true. In fact, so far, Tesla’s managed to produce exactly zero self-driving vehicles. And we can probably call off the singularity too. GPT-3 has been impressive, but the closer machines get to aping human language the easier it is to see just how far away from us they really are.

So where does that leave us, ultimately, when it comes to the future of AI? That depends on your outlook. Media hype and big tech’s advertising machine has set us up for heartbreak when we compare the reality in 2020 to our 2016-era dreams of fully autonomous flying cars and hyper-personalized digital assistants capable of managing the workload of our lives.

But, if you’re gauging the future of AI from a strictly financial, marketplace point of view, there’s an entirely different outlook to consider. American rock band Timbuk 3 put it best when they sang “the future’s so bright, I gotta wear shades.”

When and how did the first animals appear? Science has long sought an answer to this question. Uppsala University researchers and colleagues in Denmark have now jointly found, in Greenland, embryo-like microfossils up to 570 million years old, revealing that organisms of this type were dispersed throughout the world. The study is published in Communications Biology.

“We believe this discovery of ours improves our scope for understanding the period in Earth’s history when first appeared—and is likely to prompt many interesting discussions,” says Sebastian Willman, the study’s first author and a palaeontologist at Uppsala University.

The existence of animals on Earth around 540 million years ago (mya) is well substantiated. This was when the event in evolution known as the “Cambrian Explosion” took place. Fossils from a huge number of creatures from the Cambrian period, many of them shelled, exist. The first animals must have evolved earlier still; but there are divergent views in the on whether the extant fossils dating back to the Precambrian Era are genuinely classifiable as animals.

Peter and Dan continue their conversation about the Abundance Platinum Longevity trip, where Peter and a select group of entrepreneurs, executives and investors spent five days learning from the top longevity and immunology experts in two of California’s top biotech hubs.

To hear past episodes: http://podcast.diamandis.com or Subscribe on Apple Podcasts: https://podcasts.apple.com/us/podcast/exponential-wisdom/id1001794471
Subscribe on Spotify: https://open.spotify.com/show/4kndtSutHbCBQNaDmdV1fU

Bristol researchers have developed a tiny device that paves the way for higher performance quantum computers and quantum communications, making them significantly faster than the current state-of-the-art.

Researchers from the University of Bristol’s Quantum Engineering Technology Labs (QET Labs) and Université Côte d’Azur have made a new miniaturized detector to measure quantum features of light in more detail than ever before. The device, made from two working together, was used to measure the of “squeezed” quantum light at record high speeds.

Harnessing unique properties of quantum physics promises novel routes to outperform the current state-of-the-art in computing, communication and measurement. Silicon photonics—where light is used as the carrier of information in silicon micro-chips—is an exciting avenue towards these next-generation technologies.

As the icy, ocean-filled moon Europa orbits Jupiter, it withstands a relentless pummeling of radiation. Jupiter zaps Europa’s surface night and day with electrons and other particles, bathing it in high-energy radiation. But as these particles pound the moon’s surface, they may also be doing something otherworldly: making Europa glow in the dark.

New research from scientists at NASA’s Jet Propulsion Laboratory in Southern California details for the first time what the glow would look like, and what it could reveal about the composition of ice on Europa’s . Different salty compounds react differently to the radiation and emit their own unique glimmer. To the naked eye, this glow would look sometimes slightly green, sometimes slightly blue or white and with varying degrees of brightness, depending on what material it is.

Scientists use a spectrometer to separate the light into wavelengths and connect the distinct “signatures,” or spectra, to different compositions of ice. Most observations using a spectrometer on a moon like Europa are taken using reflected sunlight on the moon’s dayside, but these new results illuminate what Europa would look like in the dark.

Cosmological observations and measurements collected in the past suggest that ordinary matter, which includes stars, galaxies, the human body and countless other objects/living organisms, only makes up 20% of the total mass of the universe. The remaining mass has been theorized to consist of so-called dark matter, a type of matter that does not absorb, reflect or emit light and can thus only be indirectly observed through gravitational effects on its surrounding environment.

While the exact nature of this elusive type of matter is still unknown, in recent decades, physicists have identified many particles that reach beyond the standard model (the theory describing some of the main physical forces in the universe) and that could be good candidates. They then tried to detect these particles using two main types of advanced particle detector: gram-scale semiconducting detectors (usually made of silicon and used to search for low-mass dark matter) and ton-scale gaseous detectors (which have higher energy detection thresholds and are better suited to perform high-mass dark matter searches).

The EDELWEISS Collaboration, a large group of researchers working at Université Lyon 1, Université Paris-Saclay and other institutes in Europe, recently carried out the first search for Sub-MeV dark matter using a germanium(Ge)-based detector. While the team was unable to detect dark matter, they set a number of constraints that could inform future investigations.

The company is working towards safety certification by 2025 and commercial operations by 2030, it has said.

Canada’s TransPod and Spain’s Zeleros also aim to upend traditional passenger and freight networks with similar technology they say will slash travel times, congestion and environmental harm linked with petrol-fuelled machines.


High-speed pods could eventually make New York-Washington trip in 30 minutes.

Starlink is a global satellite system being deployed by SpaceX to provide high-speed broadband Internet access to locations where it was unreliable, unreasonably expensive or completely inaccessible. All over the world, even in well-developed countries, there are many remote regions that are lagging far behind in the speed of digital development, and Germany is no exception. Nevertheless, good news awaits the residents of the country, because, according to a representative of Starlink, the company will enter the German market this year.

In Frankfurt am Main, the groundwork has been laid for the Starlink universal Internet offering. According to the relevant trade register entry, Starlink Germany GmbH must offer Internet connection services and the sale or rental of the necessary accessories.

“If everything goes according to plan, we will start this year in Germany,” said VP Build and Flight Reliability at SpaceX Hans Königsmann to Wirtschaftswoche. “Our mission is to provide fast Internet access to remote corners of the world.”