May 20, 2020
A new artificial eye mimics and may outperform human eyes
Posted by Kelvin Dafiaghor in category: cyborgs
This is amazing.
The high-tech device boasts a field of view and reaction time similar to that of real eyes.
This is amazing.
The high-tech device boasts a field of view and reaction time similar to that of real eyes.
(WHDH) — Scientists at NASA have reportedly uncovered evidence of a bizarre parallel universe where the rules of physics and time appear to be operating in reverse.
Researchers conducting an experiment in Antarctica discovered particles from a universe that was born during the same Big Bang the created the one we live in, according to NewScientist.
A NASA team was using a giant balloon to carry electronic antennas into the sky above the frozen wastes of Antarctica when they encountered a “wind” of particles from outer space that were “a million times more powerful” than anything they had seen before, the news outlet reported.
Before there were animals, bacteria or even DNA on Earth, self-replicating molecules were slowly evolving their way from simple matter to life beneath a constant shower of energetic particles from space.
In a new paper, a Stanford professor and a former post-doctoral scholar speculate that this interaction between ancient proto-organisms and cosmic rays may be responsible for a crucial structural preference, called chirality, in biological molecules. If their idea is correct, it suggests that all life throughout the universe could share the same chiral preference.
Chirality, also known as handedness, is the existence of mirror-image versions of molecules. Like the left and right hand, two chiral forms of a single molecule reflect each other in shape but don’t line up if stacked. In every major biomolecule—amino acids, DNA, RNA—life only uses one form of molecular handedness. If the mirror version of a molecule is substituted for the regular version within a biological system, the system will often malfunction or stop functioning entirely. In the case of DNA, a single wrong handed sugar would disrupt the stable helical structure of the molecule.
From testing drugs to developing vaccines, the close study of the immune system is key to improving real-world health outcomes. T-cells are integral to this research, as these white blood cells help tailor the body’s immune response to specific pathogens.
With lattice light-sheet microscopy (LLSM), scientists have been able to closely examine individual cells, such as T-cells, in 4D. But with limited data points, there wasn’t an effective way to analyze the LLSM data.
A new paper by researchers from the Pritzker School of Molecular Engineering (PME) at the University of Chicago, published May 20 in the journal Cell Systems, introduces a solution—a pipeline for lattice light-sheet microscopy multi-dimensional analyses (LaMDA).
Strong coupling between cavity photon modes and donor/acceptor molecules can form polaritons (hybrid particles made of a photon strongly coupled to an electric dipole) to facilitate selective vibrational energy transfer between molecules in the liquid phase. The process is typically arduous and hampered by weak intermolecular forces. In a new report now published on Science, Bo Xiang, and a team of scientists in materials science, engineering and biochemistry at the University of California, San Diego, U.S., reported a state-of-the-art strategy to engineer strong light-matter coupling. Using pump-probe and two-dimensional (2-D) infrared spectroscopy, Xiang et al. found that strong coupling in the cavity mode enhanced the vibrational energy transfer of two solute molecules. The team increased the energy transfer by increasing the cavity lifetime, suggesting the energy transfer process to be a polaritonic process. This pathway on vibrational energy transfer will open new directions for applications in remote chemistry, vibration polariton condensation and sensing mechanisms.
Vibrational energy transfer (VET) is a universal process ranging from chemical catalysis to biological signal transduction and molecular recognition. Selective intermolecular vibrational energy transfer (VET) from solute-to-solute is relatively rare due to weak intermolecular forces. As a result, intermolecular VET is often unclear in the presence of intramolecular vibrational redistribution (IVR). In this work, Xiang et al. detailed a state-of-the-art method to engineer intermolecular vibrational interactions via strong light-matter coupling. To accomplish this, they inserted a highly concentrated molecular sample into an optical microcavity or placed it onto a plasmonic nanostructure. The confined electromagnetic modes in the setup then reversibly interacted with collective macroscopic molecular vibrational polarization for hybridized light-matter states known as vibrational polaritons.
Researchers at Seoul National University and Korea Advanced Institute of Science and Technology (KAIST) have recently developed a sensor that can act as an electronic skin and integrated it with a deep neural network. This deep learning-enhanced e-skin system, presented in a paper published in Nature Communications, can capture human dynamic motions, such as rapid finger movements, from a distance.
The new system stems from an interdisciplinary collaboration that involves experts in the fields of mechanical engineering and computer science. The two researchers who led the recent study are Seung Hwan Ko, a professor of mechanical engineering at Soul National University and Sungho Jo, a computing professor at KAIST.
For several years, Prof. Ko had been trying to develop highly sensitive strain sensors by generating cracks in metal nanoparticle films using laser technology. The resulting sensor arrays were then applied to a virtual reality (VR) glove designed to detect the movements of people’s fingers.
Microsoft announced Tuesday that it has built the fifth most powerful computer on Earth.
Packed with 285,000 processor cores and 10,000 GPUs, the supercomputer was built in collaboration with San Francisco-based artificial intelligence research organization OpenAI. Microsoft announced its partnership with OpenAI last year and contributed $1 billion to the project.
Continue reading “Microsoft OpenAI computer is world’s 5th most powerful” »
Buckling, the sudden loss of structural stability, is usually the stuff of engineering nightmares. Mechanical buckling means catastrophic failure for every structural system from rockets to soufflés. It’s what caused the Deepwater Horizon oil spill in 2010, among numerous other disasters.
But, as anyone who has ever played with a toy popper knows, buckling also releases a lot of energy. When the structure of a popper buckles, the energy released by the instability sends the toy flying through the air. Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Harvard’s Wyss Institute for Biologically Inspired Engineering have harnessed that energy and used buckling to their advantage to build a fast-moving, inflatable soft actuator.
Continue reading “Researchers build a fast-moving jumping soft robot” »
In an innovative study, Radboudumc and LUMC jointly tested a candidate vaccine based on a genetically weakened malaria parasite. The results of this clinical trial, published in Science Translational Medicine, show that the vaccine is safe and elicits a defense response against a malaria infection.
Malaria is a major infectious disease, caused by a parasite with a complicated life cycle in humans and mosquitoes. The first stage in humans takes place in the liver, the second in the blood. Since the liver phase does not cause any symptoms of disease, but the blood phase does, the purpose of the vaccine is to stop the parasite in the liver.
Tune in live at 4 p.m. EDT, as NASA astronauts Douglas Hurley and Robert Behnken arrive at Kennedy Space Center to meet the SpaceX #CrewDragon spacecraft and Falcon 9 rocket that will launch them to the space station and into history.