Heat engines, converting heat into useful work, are vital in modern society. With advances in nanotechnology, exploring quantum heat engines (QHEs) is crucial for designing efficient systems and understanding quantum thermodynamics.
A team led by Robert Keil and Tommaso Faleo from the Department of Experimental Physics has investigated the relationship between entanglement and interference in quantum systems of more than two particles in the laboratory.
Terahertz (THz) waves and THz technologies have gradually opened a new style for communications, cloud-based storage/computing, information contest, and medical tools. With the advancement of THz technologies, studies on THz nonlinear optics have emerged, achieving considerable breakthroughs in both physics and technology.
Widely utilized across various industries such as chemistry, agriculture, and military, this technology relies on strategies like dispersive optics and narrow-band light filters.
However, limitations exist in these approaches. Additionally, the fabrication of large-scale InGaAs detector arrays poses challenges, necessitating the development of new experimental methods and algorithms to advance infrared hyperspectral imaging technology in terms of miniaturization and cost-effectiveness.
In a paper published in Light Science & Applications, a team led by Professor Baoqing Sun and Yuan Gao from Shandong University introduce a novel method for encoding near-infrared spectral and spatial data.
In both the natural world and human society, there commonly exist complex systems, such as climate systems, ecological systems, and network systems. Due to the involvement of numerous interacting elements, complex systems can stay in multiple different states, and their overall behavior generally exhibits randomness and high disorder.
A recent study underscores the dynamic nature of black holes and extends similar thermodynamic characteristics to Extremely Compact Objects, advancing our comprehension of their behavior in quantum gravity scenarios.
A paper titled “Universality of the thermodynamics of a quantum-mechanically radiating black hole departing from thermality,” published in Physics Letters B highlights the importance of considering black holes as dynamical systems, where variations in their geometry during radiation emissions are critical to accurately describing their thermodynamic behavior.
Bridging black holes and extremely compact objects.
Researchers have discovered tiny time delays in electron activity within molecules when exposed to X-rays, a groundbreaking finding made possible by advanced X-ray lasers at the Linac Coherent Light Source.
These delays, measured in attoseconds, reveal complex interactions that could advance our understanding of molecular dynamics and potentially influence fields like cancer detection.
Pioneering Attosecond Measurements
Researchers have decoded the genomic sequence of Zygnema algae, revealing insights into the evolutionary transition from aquatic to terrestrial plant life. This breakthrough enhances our understanding of plant adaptation mechanisms and offers a basis for future studies in environmental resilience and bioenergy.
Plant life first emerged on land about 550 million years ago, and an international research team co-led by University of Nebraska–Lincoln computational biologist Yanbin Yin has cracked the genomic code of its humble beginnings, which made possible all other terrestrial life on Earth, including humans.
The team — about 50 scientists in eight countries – has generated the first genomic sequence of four strains of Zygnema algae, the closest living relatives of land plants. Their findings shed light on the ability of plants to adjust to the environment and provide a rich basis for future research.
This belief is slightly paradoxical as we have zero evidence that aliens even exist. What’s more, given the vast distances between star systems, it seems odd we’d only learn about them from a visit. Evidence for aliens is more likely to come from signals from faraway planets.
In a paper accepted for publication in the Proceedings of the International Astronomical Union, I argue that the belief in alien visitors is no longer a quirk, but a widespread societal problem.
About 2,890 kilometres beneath our feet lies a gigantic ball of liquid metal: our planet’s core. Scientists like me use the seismic waves created by earthquakes as a kind of ultrasound to “see” the shape and structure of the core.
Using a new way of studying these waves, my colleague Xiaolong Ma and I have made a surprising discovery: there is a large donut-shaped region of the core around the Equator, a few hundred kilometres thick, where seismic waves travel about 2% slower than in the rest of the core.
We think this region contains more lighter elements such as silicon and oxygen, and may play a crucial role in the vast currents of liquid metal running through the core that generate Earth’s magnetic field. Our results are published today in Science Advances.