Menu

Blog

Page 7263

Oct 5, 2020

Infrared Snake Eyes: TRPA1 and the Thermal Sensitivity of the Snake Pit Organ

Posted by in category: biotech/medical

Circa 2010


The pit organs of pit vipers, pythons, and boas are remarkable sensory devices that allow these snakes to detect infrared radiation emitted by warm-blooded prey. It has been theorized that this capacity reflects the pit organ’s exceptional sensitivity to subtle fluctuations in temperature, but the molecules responsible for this extreme thermal resolution have been unknown. New evidence shows that pit organs respond to temperature using the warmth-activated cation channel TRPA1 (transient receptor potential ankyrin 1), a finding that provides a first glimpse of the underlying molecular hardware. The properties of these snake TRPA1s raise intriguing questions about the mechanisms responsible for the exceptional sensitivity of many biological thermoreceptors and about the evolutionary origins of these warmth-activated TRP channels.

Oct 5, 2020

Inflight fiber printing toward array and 3D optoelectronic and sensing architectures

Posted by in categories: 3D printing, chemistry, nanotechnology, wearables

Scalability and device integration have been prevailing issues limiting our ability in harnessing the potential of small-diameter conducting fibers. We report inflight fiber printing (iFP), a one-step process that integrates conducting fiber production and fiber-to-circuit connection. Inorganic (silver) or organic {PEDOT: PSS [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate]} fibers with 1- to 3-μm diameters are fabricated, with the fiber arrays exhibiting more than 95% transmittance (350 to 750 nm). The high surface area–to–volume ratio, permissiveness, and transparency of the fiber arrays were exploited to construct sensing and optoelectronic architectures. We show the PEDOT: PSS fibers as a cell-interfaced impedimetric sensor, a three-dimensional (3D) moisture flow sensor, and noncontact, wearable/portable respiratory sensors. The capability to design suspended fibers, networks of homo cross-junctions and hetero cross-junctions, and coupling iFP fibers with 3D-printed parts paves the way to additive manufacturing of fiber-based 3D devices with multilatitude functions and superior spatiotemporal resolution, beyond conventional film-based device architectures.

Small-diameter conducting fibers have unique morphological, mechanical, and optical properties such as high aspect ratio, low bending stiffness, directionality, and transparency that set them apart from other classes of conducting, film-based micro/nano structures (1–3). Orderly assembling of thin conducting fibers into an array or three-dimensional (3D) structures upscales their functional performance for device coupling. Developing new strategies to control rapid synthesis, patterning, and integration of these conducting elements into a device architecture could mark an important step in enabling new device functions and electronic designs (4, 5). To date, conducting micro/nanoscaled fibers have been produced and assembled in a number of ways, from transferring of chemically grown nanofibers/wires (6, 7), writing electrohydrodynamically deposited lines (8, 9), to drawing ultralong fibers (10, 11), wet spinning of fibers (12–14), and 2D/3D direct printing (15–18).

Oct 5, 2020

Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material

Posted by in categories: biological, chemistry, computing, cyborgs, sustainability

The absence of piezoelectricity in silicon makes direct electromechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon with polymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopic electrostrain in aqueous electrolyte. The voltage-strain coupling is three orders of magnitude larger than the best-performing ceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted action of 100 billions of nanopores per square centimeter cross section and to potential-dependent pressures of up to 150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4 to 0.9 volts), along with the sustainable and biocompatible base materials, make this hybrid promising for bioactuator applications.

An electrochemical change in the oxidation state of polypyrrole (PPy) can increase or decrease the number of delocalized charges in its polymer backbone (1). Immersed in an electrolyte, this is also accompanied by a reversible counter-ion uptake or expulsion and thus with a marcroscopic contraction or swelling under electrical potential control, making PPy one of the most used artificial muscle materials (15).

Here, we combine this actuator polymer with the three-dimensional (3D) scaffold structure of nanoporous silicon (68) to design, similarly as found in many multiscale biological composites in nature (9), a material with embedded electrochemical actuation that consists of a few light and abundant elemental constituents (i.e., H, C, N, O, Si, and Cl).

Oct 5, 2020

Was the moon magnetized by impact plasmas?

Posted by in categories: energy, space

The crusts of the Moon, Mercury, and many meteorite parent bodies are magnetized. Although the magnetizing field is commonly attributed to that of an ancient core dynamo, a longstanding hypothesized alternative is amplification of the interplanetary magnetic field and induced crustal field by plasmas generated by meteoroid impacts. Here, we use magnetohydrodynamic and impact simulations and analytic relationships to demonstrate that although impact plasmas can transiently enhance the field inside the Moon, the resulting fields are at least three orders of magnitude too weak to explain lunar crustal magnetic anomalies. This leaves a core dynamo as the only plausible source of most magnetization on the Moon.

The Moon presently lacks a core dynamo magnetic field. However, it has been known since the Apollo era that the lunar crust contains remanent magnetization, with localized surface fields reaching up to hundreds of nanoteslas or higher and spanning up to hundreds of kilometers (1). Magnetic studies of Apollo samples and the lunar crust indicate that the magnetizing field likely reached tens of microteslas before 3.56 billion years (Ga) ago (1, 2). The origin of the strongest lunar crustal anomalies and the source of the field that magnetized them have been longstanding mysteries.

Although magnetic fields in rocky bodies are commonly explained by convective dynamos in their metallic cores, a convective dynamo on the Moon may not have had sufficient energy to produce the strongest implied surface paleofields (3, 4). This may imply that a fundamentally different nonconvective dynamo mechanism operated in the Moon or that a process other than a core dynamo produced such magnetization.

Oct 5, 2020

Have your cake and 3D print it, too

Posted by in categories: 3D printing, space

See how technology built for @Space_Station could advance humanity’s access to nutrition. #SpaceStation20th

Oct 5, 2020

SpaceX, L3Harris win Space Development Agency contracts to build missile-warning satellites

Posted by in categories: internet, military, satellites

SpaceX is developing a new satellite bus for the Space Development Agency based on the Starlink design.


WASHINGTON — The Space Development Agency awarded SpaceX a $149 million contract and L3Harris a $193.5 million contract to each build four satellites to detect and track ballistic and hypersonic missiles.

The contracts announced Oct. 5 are for the first eight satellites of a potentially much larger Space Development Agency constellation of sensor satellites known as Tracking Layer Tranche 0. This is SpaceX’s first military contract to produce satellites.

Continue reading “SpaceX, L3Harris win Space Development Agency contracts to build missile-warning satellites” »

Oct 5, 2020

Single‐Atom Catalytic Materials for Advanced Battery Systems

Posted by in categories: materials, particle physics

Single‐atom catalytic materials with atomic sizes, good conductivity, and individual catalytic sites are designed for advanced battery systems, including lithium-sulfur batteries, zinc-air batteries,…

Oct 5, 2020

A single atom can function as either an engine or a fridge

Posted by in category: quantum physics

Scientists reported a single-atom energy-conversion quantum device operating as an engine, or a refrigerator, coupled to a quantum load.

Oct 5, 2020

The Secret is Out: Scientists Figured Out How Tardigrades Became Immune to Radiation

Posted by in category: biological

Japanese researchers have discovered the secret to one of the tardigrade’s most impressive abilities. Tardigrades are immune to high levels of radiation and it’s all because of a protein. It turns out, human biology may be capable of developing it, too.

Oct 5, 2020

A quantum leap In the drug development world

Posted by in categories: biotech/medical, computing

Microfluidic chips that simulate human tissue enable us to conduct medical experiments in ways that could not have been even imagined only a few years ago. Two leading Israeli researchers report from the turbulent Israeli front line of the global ‘organ-on-a-chip’ sector.