Menu

Blog

Page 7253

Oct 2, 2020

This ‘unhackable’ network uses the weird power of quantum physics

Posted by in categories: encryption, engineering, quantum physics

O,.o.


BT and Toshiba have deployed an ‘unhackable’ quantum network that uses streams of photons to encrypt sensitive communications.

Continue reading “This ‘unhackable’ network uses the weird power of quantum physics” »

Oct 2, 2020

China’s revival of claim line could worsen border row with India: experts

Posted by in category: futurism

China’s insistence on a 1959 claim line and its stance on Ladakh are doing little to ease border tensions with India, say analysts.

Oct 2, 2020

Tunable free-electron X-ray radiation from van der Waals materials

Posted by in categories: biotech/medical, chemistry, engineering, nanotechnology, quantum physics, security

Technion researchers have developed accurate radiation sources that are expected to lead to breakthroughs in medical imaging and other areas. They have developed precise radiation sources that may replace the expensive and cumbersome facilities currently used for such tasks. The suggested apparatus produces controlled radiation with a narrow spectrum that can be tuned with high resolution, at a relatively low energy investment. The findings are likely to lead to breakthroughs in a variety of fields, including the analysis of chemicals and biological materials, medical imaging, X-ray equipment for security screening, and other uses of accurate X-ray sources.

Published in the journal Nature Photonics, the study was led by Professor Ido Kaminer and his master’s student Michael Shentcis as part of a collaboration with several research institutes at the Technion: the Andrew and Erna Viterbi Faculty of Electrical Engineering, the Solid State Institute, the Russell Berrie Nanotechnology Institute (RBNI), and the Helen Diller Center for Quantum Science, Matter and Engineering.

The researchers’ paper shows an experimental observation that provides the first proof-of-concept for theoretical models developed over the last decade in a series of constitutive articles. The first article on the subject also appeared in Nature Photonics. Written by Prof. Kaminer during his postdoc at MIT, under the supervision of Prof. Marin Soljacic and Prof. John Joannopoulos, that paper presented theoretically how two-dimensional materials can create X-rays. According to Prof. Kaminer, “that article marked the beginning of a journey towards sources based on the unique physics of two-dimensional materials and their various combinations—heterostructures. We have built on the theoretical breakthrough from that article to develop a series of follow-up articles, and now, we are excited to announce the first experimental observation on the creation of X-ray radiation from such materials, while precisely controlling the radiation parameters.”

Oct 2, 2020

Physicists Harness the Atomic Motion of Graphene to Generate Clean, Limitless Power

Posted by in categories: computing, physics

Researchers build circuit that harnessed the atomic motion of graphene to generate an electrical current that could lead to a chip to replace batteries.

A team of University of Arkansas physicists has successfully developed a circuit capable of capturing graphene’s thermal motion and converting it into an electrical current.

Continue reading “Physicists Harness the Atomic Motion of Graphene to Generate Clean, Limitless Power” »

Oct 2, 2020

A new thermometer measures temperature with sound

Posted by in category: biotech/medical

A new thermometer takes the temperature of objects by sensing sounds that the objects give off when they get hot. In this simulation, a sheet of silicon nitride (center) detects sound waves from hot blobs of epoxy (ovals at top, bottom, left and right).

Oct 2, 2020

Novel Role of Microglia as Modulators of Neurons in the Brain Is Discovered

Posted by in categories: chemistry, neuroscience

Researchers have identified a bio-chemical circuit that supports neuron-microglia communication. When neurons are active, they release ATP. Microglia sense extracellular ATP and the compound draws the immune cell toward the neuron.circuit that supports neuron-microglia communication. When neurons are active, they release ATP. Microglia sense extracellular ATP and the compound draws the immune cell toward the neuron.circuit that supports neuron-microglia communication. When neurons are active, they release ATP. Microglia sense extracellular ATP and the compound draws the immune cell toward the neuron.

Oct 2, 2020

Will World War III Be Fought by Robots?

Posted by in categories: existential risks, robotics/AI

What happens when autonomous machines have “to choose between various shades of wrong?”

Oct 2, 2020

SpaceX Boca Chica — Super Heavy Forward Dome Sleeved

Posted by in categories: materials, space travel

The first Super Heavy prototype has entered assembly operations, with the forward barrel sleeved and the fuel stack section spotted. The LR1600/2 crane (aka Tankzilla) continued to grow, and Orbital Launch Pad construction continued with more concrete being pumped into the legs. Starships SN5 and 6 remain outside after having been moved out of the High Bay yesterday, and work continued around the site.

Video and Pictures from Mary (@BocaChicaGal). Edited by Brady Kenniston (@TheFavoritist).

Continue reading “SpaceX Boca Chica — Super Heavy Forward Dome Sleeved” »

Oct 2, 2020

Finnish researchers claim quantum computing breakthrough

Posted by in categories: particle physics, quantum physics, supercomputing

Scientists have created a device which could make it easier to harness super-fast quantum computers for real-world applications, a team at Finland’s Aalto University said on Wednesday.

Quantum computers are a new generation of machines powered by energy transfers between so-called “”— a fraction of a millimetre across.

Scientists believe the devices will eventually be able to vastly outperform even the world’s most powerful conventional supercomputers.

Oct 2, 2020

Robot fabric could solve the most annoying part of camping

Posted by in category: robotics/AI

In a new study, researchers describe a ‘smart’ fabric that can react to environmental cues and fold itself.