Menu

Blog

Page 7238

Aug 18, 2020

Driverless DeLorean Drifting

Posted by in categories: robotics/AI, transportation

This driverless DeLorean drifts through a kilometre long course just as good as any human would đŸ˜ČđŸ€Ż.

Aug 18, 2020

Check out spaceforce.mil

Posted by in category: futurism

Aug 18, 2020

So, WTF Is Up With Putting a Human in ‘Suspended Animation?’

Posted by in category: biotech/medical

An ongoing trial is putting people into suspended animation in time for potentially life-saving surgery. We ask: WTF?

Aug 18, 2020

Inner Complexity of Saturn Moon, Enceladus, revealed

Posted by in categories: chemistry, space

Enceladus’ subsurface ocean composition hints at habitable conditions. A Southwest Research Institute team developed a new geochemical model that reveals that carbon dioxide (CO2) from within Enceladus, an ocean-harboring moon of Saturn, may be controlled by chemical reactions at its seafloor. Studying the plume of gases and frozen sea spray released through cracks in the moon’s icy surface suggests an interior more complex than previously thought.

“By understanding the composition of the plume, we can learn about what the ocean is like, how it got to be this way and whether it provides environments where life as we know it could survive,” said SwRI’s Dr. Christopher Glein, lead author of a paper in Geophysical Research Letters outlining the research. “We came up with a new technique for analyzing the plume composition to estimate the concentration of dissolved CO2 in the ocean. This enabled modeling to probe deeper interior processes.”

Analysis of mass spectrometry data from NASA’s Cassini spacecraft indicates that the abundance of CO2 is best explained by geochemical reactions between the moon’s rocky core and liquid water from its subsurface ocean. Integrating this information with previous discoveries of silica and molecular hydrogen (H2) points to a more complex, geochemically diverse core.

Aug 18, 2020

Huge New Findings Inside the Body of the Best-Preserved Ice Age Animal Ever Found

Posted by in category: biotech/medical

Liquid blood and urine were found inside the 42,000-yr-old foal. The oldest blood ever found by 10,000 years!


It made headlines in 2018 when researchers discovered the frozen remains of a foal that died 42,000 years ago in the Verkhoyansk region of Siberia, miraculously preserved in permafrost. But now an even more startling announcement has been made: Liquid blood and urine were found inside of the foal.

In an interview given to the Siberian Times, Semyon Grigoryev, head of the Mammoth Museum in Yakutsk, said, “The autopsy shows beautifully preserved internal organs. Samples of liquid blood were taken from heart vessels — it was preserved in the liquid state for 42,000 years thanks to favorable burial conditions and permafrost. The muscle tissues preserved their natural reddish color.”

Continue reading “Huge New Findings Inside the Body of the Best-Preserved Ice Age Animal Ever Found” »

Aug 18, 2020

Cancer research breakthrough as DNA behavior is uncovered in 3D models

Posted by in categories: biotech/medical, genetics

First, we found that every cancer organoid retains the properties of the tissue of origin, so this shows that if the samples were obtained from the surgery of a colon or pancreatic cancer, the organoid closely resembles the original primary tumor. Second, we discovered that there is no contamination of normal cells, thus, the malignant pure transformed cells can be analyzed without interferences. And finally, the 3D organoid cancers are closer to the patient tumors than the commonly used 2-D cell lines.


Scientists have used 3D models to break down the DNA behavior of cancer cells, in a breakthrough new study which could revolutionize treatment for the disease.

In what is a first for science, a research team led by Dr. Manel Esteller, Director of the Josep Carreras Leukaemia Research Institute (IJC), demonstrated how 3D models (known as organoids) can now be used to develop a characterization of the DNA make-up—or the epigenetic fingerprint—of human cancer.

Continue reading “Cancer research breakthrough as DNA behavior is uncovered in 3D models” »

Aug 18, 2020

Doctors treat Parkinson’s with a novel brain cell transplant

Posted by in categories: biotech/medical, neuroscience

“How would you like to be known as the neurosurgeon who cured Parkinson’s disease?”


A month before the scheduled surgery, the four researchers were ready to chaperone the brain cells on their 190-mile journey. They never anticipated they were in for “The Amazing Race”-meets-“ER.”

It was after midnight on a late summer night in 2017, and they had less than eight hours to get the cells by ambulance, private plane, and another ambulance from Dana-Farber Cancer Institute in Boston to Weill Cornell Medical Center in Manhattan. If it took longer, the cells would almost certainly be DOA, and so might the researchers’ plan to carry out an experimental transplant surgery unprecedented in the annals of medicine: replacing the dysfunctional brain cells of a Parkinson’s disease patient with the progeny of an extraordinary type of stem cell. Created in the lab from a patch of the patient’s own skin, these cells, it was hoped, would settle into the brain like they belonged there and permanently restore the patient’s ability to walk and move normally.

Continue reading “Doctors treat Parkinson’s with a novel brain cell transplant” »

Aug 18, 2020

The Mini Tesla!

Posted by in category: futurism

Watch this this mini Tesla Cybertruck slay in a tug of war! Its so mini I thought it was controlled with a remote control
 but it’s not
 Check it out guys thanks to The Hacksmith.

Aug 18, 2020

USSF Transfer Q & As

Posted by in category: futurism

Some answers to your questions, please keep asking, and thanks for your patience as we #buildthespaceforce. #USSF #SpaceForce

Aug 18, 2020

Shining light into the dark: New discovery makes microscopic imaging possible in dark conditions

Posted by in categories: biological, chemistry

Curtin University researchers have discovered a new way to more accurately analyze microscopic samples by essentially making them glow in the dark through the use of chemically luminescent molecules.

Lead researcher Dr. Yan Vogel from the School of Molecular and Life Sciences said current methods of microscopic imaging rely on fluorescence, which means a light needs to be shining on the while it is being analyzed. While this method is effective, it also has some drawbacks.

“Most biological cells and chemicals generally do not like exposure to light because it can destroy things—similar to how certain plastics lose their colors after prolonged sun exposure, or how our skin can get sunburned,” Dr. Vogel said. “The light that shines on the samples is often too damaging for the living specimens and can be too invasive, interfering with the biochemical process and potentially limiting the study and scientists’ understanding of the living organisms.”