Menu

Blog

Page 7219

Apr 14, 2020

Timing of large earthquakes follows a ‘devil’s staircase’ pattern

Posted by in category: mathematics

At the regional level and worldwide, the occurrence of large shallow earthquakes appears to follow a mathematical pattern called the Devil’s Staircase, where clusters of earthquake events are separated by long but irregular intervals of seismic quiet.

The finding published in the Bulletin of the Seismological Society of America differs from the pattern predicted by classical modeling that suggests earthquakes would occur periodically or quasi-periodically based on cycles of build-up and release of tectonic stress. In fact, say Yuxuan Chen of the University of Missouri, Columbia, and colleagues, periodic large earthquake sequences are relatively rare.

The researchers note that their results could have implications for seismic hazard assessment. For instance, they found that these large earthquake sequences (those with events magnitude 6.0 or greater) are “burstier” than expected, meaning that the clustering of earthquakes in time results in a higher probability of repeating seismic events soon after a large earthquake. The irregular gap between event bursts also makes it more difficult to predict an average recurrence time between big earthquakes.

Apr 14, 2020

Discovery offers new avenue for next-generation data storage

Posted by in categories: computing, materials

The demands for data storage and processing have grown exponentially as the world becomes increasingly connected, emphasizing the need for new materials capable of more efficient data storage and data processing.

An international team of researchers, led by physicist Paul Ching-Wu Chu, founding director of the Texas Center for Superconductivity at the University of Houston, is reporting a new compound capable of maintaining its skyrmion properties at through the use of high pressure. The results also suggest the potential for using chemical pressure to maintain the properties at ambient pressure, offering promise for commercial applications.

The work is described in the Proceedings of the National Academy of Sciences.

Apr 14, 2020

New scavenger technology allows robots to ‘eat’ metal for energy

Posted by in categories: robotics/AI, solar power, sustainability

When electronics need their own power sources, there are two basic options: batteries and harvesters. Batteries store energy internally, but are therefore heavy and have a limited supply. Harvesters, such as solar panels, collect energy from their environments. This gets around some of the downsides of batteries but introduces new ones, in that they can only operate in certain conditions and can’t turn that energy into useful power very quickly.

New research from the University of Pennsylvania’s School of Engineering and Applied Science is bridging the gap between these two fundamental technologies for the first time in the form of a “metal-air scavenger” that gets the best of both worlds.

This metal-air scavenger works like a battery, in that it provides power by repeatedly breaking and forming a series of chemical bonds. But it also works like a harvester, in that power is supplied by in its environment: specifically, the chemical bonds in metal and air surrounding the metal-air scavenger.

Apr 14, 2020

Researchers design intelligent microsystem for faster, more sustainable industrial chemistry

Posted by in categories: chemistry, engineering, information science, robotics/AI, sustainability

The synthesis of plastic precursors, such as polymers, involves specialized catalysts. However, the traditional batch-based method of finding and screening the right ones for a given result consumes liters of solvent, generates large quantities of chemical waste, and is an expensive, time-consuming process involving multiple trials.

Ryan Hartman, professor of chemical and at the NYU Tandon School of Engineering, and his laboratory developed a lab-based “intelligent microsystem” employing , for modeling that shows promise for eliminating this costly process and minimizing environmental harm.

In their research, “Combining automated microfluidic experimentation with machine learning for efficient polymerization design,” published in Nature Machine Intelligence, the collaborators, including doctoral student Benjamin Rizkin, employed a custom-designed, rapidly prototyped microreactor in conjunction with automation and in situ infrared thermography to study exothermic (heat generating) polymerization—reactions that are notoriously difficult to control when limited experimental kinetic data are available. By pairing efficient microfluidic technology with machine learning algorithms to obtain high-fidelity datasets based on minimal iterations, they were able to reduce chemical waste by two orders of magnitude and catalytic discovery from weeks to hours.

Apr 14, 2020

Supercomputing future wind power rise

Posted by in categories: energy, supercomputing, sustainability

Wind power surged worldwide in 2019, but will it sustain? More than 340,000 wind turbines generated over 591 gigawatts globally. In the U.S., wind powered the equivalent of 32 million homes and sustained 500 U.S. factories. What’s more, in 2019 wind power grew by 19 percent, thanks to both booming offshore and onshore projects in the U.S. and China.

A study by Cornell University researchers used supercomputers to look into the future of how to make an even bigger jump in in the U.S.

“This research is the first detailed study designed to develop scenarios for how wind energy can expand from the current levels of seven percent of U.S. electricity supply to achieve the 20 percent by 2030 goal outlined by the U.S. Department of Energy National Renewable Energy Laboratory (NREL) in 2014,” said study co-author Sara C. Pryor, a professor in the Department of Earth and Atmospheric Studies, Cornell University. Pryor and co-authors published the study in Nature Scientific Reports, February 2020.

Apr 14, 2020

Study points to evidence of stray dogs as possible origin of SARS-CoV-2 pandemic

Posted by in category: biotech/medical

Ever since the outbreak of the SARS-CoV-2, scientists have been scrambling to identify the species of origin to understand how the new coronavirus first leapt from its animal hosts to humans, causing the current pandemic infecting more than a million people worldwide.

Scientists have been looking for an intermediate animal host between bats, which are known to harbor many coronaviruses, and the first introduction of SARS-CoV-2 into humans.

Many animals, beginning with snakes and most recently, pangolins, have all been put forth as the likely intermediate, but the viruses isolated from them are too divergent from SARS-CoV-2, suggesting a common ancestor too far back in time—-living in the 1960s.

Apr 14, 2020

State Department cables warned of safety issues at Wuhan lab studying bat coronaviruses

Posted by in categories: biotech/medical, government

The U.S. government is still trying to understand the origins of covid-19.

Apr 14, 2020

Downloading the Human Brain to a Computer: Elon Musk’s Neuralink

Posted by in categories: biotech/medical, Elon Musk, robotics/AI

https://www.youtube.com/watch?v=r-vbh3t7WVI

Your Neuralink device would be implanted using traditional neurosurgery methods safely and seamlessly with a robot surgeon. As mentioned in the Neuralink published paper, “We have also built a neurosurgical robot capable of inserting six threads (192 electrodes) per minute. Each thread can be individually inserted into the brain with micron precision for the avoidance of surface vasculature and targeting specific brain regions.”

Continue reading “Downloading the Human Brain to a Computer: Elon Musk’s Neuralink” »

Apr 14, 2020

Bill Gates and Intellectual Ventures Funds Microchip Implant Vaccine Technology

Posted by in categories: biotech/medical, computing, mobile phones, nanotechnology, quantum physics

You really can not make this up The Bill and Melinda Gates Foundation has donated more than $21 million towards developing a vaccine technology that uses a tattoo-like mechanism which injects invisible nanoparticles under the skin that is now being tested in a vaccine against the virus that causes COVID-19.


Another study funded by the Bill and Melinda Gates Foundation and published in December, 2019 by researchers from the Massachusetts Institute of Technology, the Institute of Chemistry of the Chinese Academy of Sciences in Beijing and the Global Good, Intellectual Ventures Laboratory in Bellevue, WA, describes how “near-infrared quantum dots” can be implanted under the skin along with a vaccine to encode information for “decentralized data storage and bio-sensing.”

“To maximize the utility of this technology for vaccination campaigns, we aimed to create a platform compatible with microneedle-delivered vaccines that could reliably encode data on an individual for at least five years after administration,” said the MIT paper, titled Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. “In addition, this system also needed to be highly biocompatible, deliver a sufficient amount of dye after an application time of 2 min or less, and be detectable using a minimally adapted smartphone.”

Continue reading “Bill Gates and Intellectual Ventures Funds Microchip Implant Vaccine Technology” »

Apr 14, 2020

FDA should approve transplants of islet cells for type 1 diabetes

Posted by in category: biotech/medical

O,.o 2019


Transplanting insulin-making islet cells comes close to a cure for type 1 diabetes. It was developed in the U.S. and should be available here. But it isn’t.