Toggle light / dark theme

Computational molecular physics (CMP) aims to leverage the laws of physics to understand not just static structures but also the motions and actions of biomolecules. Applying CMP to proteins has required either simplifying the physical models or running simulations that are shorter than the time scale of the biological activity. Brini et al. reviewed advances that are moving CMP to time scales that match biological events such as protein folding, ligand unbinding, and some conformational changes. They also highlight the role of blind competitions in driving the field forward. New methods such as deep learning approaches are likely to make CMP an increasingly powerful tool in describing proteins in action.

Science, this issue p.

### BACKGROUND

US army wants to be able read soldiers minds. This would enable machines to detect stress and soldier intentions to correct them. It could also allow them to communicate with each other with just their brain signals.


Communicating silently through the mind sounds at home in a Marvel film, but now the US Army is delivering technology to do it. With that said, it may be a while before tangible results are seen.

Research funded by the US Army has managed to decode brain signals that impact action, and has also managed to separate signals that change behaviour from those that do not.

As a result of this breakthrough, it’s hoped that machines will be able to understand the intentions of soldiers and correct them before action is taken. This could protect soldiers by detecting stress, and it seems the technology could have even more significant use if further research is successful.

Japan and China are racing to build a new type of ultra-fast, levitating train, seeking to demonstrate their mastery over a technology with big export potential.

Magnetic levitation, or maglev, trains use powerful magnets to glide along charged tracks at super fast speeds made possible by the lack of friction. A handful of short distance and experimental maglev trains are already in operation, but Asia’s two biggest economies are vying to develop what would be the world’s first long-distance intercity lines.

The biggest computer chip in the world is so fast and powerful it can predict future actions “faster than the laws of physics produce the same result.”

That’s according to a post by Cerebras Systems, a that made the claim at the online SC20 supercomputing conference this week.

Working with the U.S. Department of Energy’s National Energy Technology Laboratory, Cerebras designed what it calls “the world’s most powerful AI compute system.” It created a massive chip 8.5 inch-square chip, the Cerebras CS-1, housed in a refrigerator-sized computer in an effort to improve on deep-learning training models.