Toggle light / dark theme

Integrating diverse data sources with different formats and standards also presents considerable challenges. Promoting open-source platforms and standardizing data formats are critical for facilitating data exchange within the space industry.

Robbie Robertson, CEO of Sedaro, identifies the main barrier to integrating digital twin technology as a cultural shift rather than technical feasibility. “The most substantial limitation is the change involved in adopting this new approach,” he explains. Overcoming the inertia of legacy tools to build a future-proof system is crucial. Additionally, addressing the shortage of skilled professionals is vital. Collaborations with institutions like MIT’s Aeronautics and Astronautics Department and robust educational initiatives are essential to developing the next generation of engineers and scientists equipped to manage digital twins.

Digital twin technology has revolutionized the space industry by enhancing mission design, testing and management. Organizations like NASA, ESA and the Department of Defense utilize this technology to improve reliability, efficiency and success. As digital twins evolve, their role in space exploration and utilization becomes increasingly vital.

If we don’t understand why we’re conscious, how come we’re so sure that extremely simple minds are not? I propose to think of consciousness as intrinsic to computation, although different types of computation may have very different types of consciousness – some so alien that we can’t imagine them. Since all physical processes are computations, this view amounts to a kind of panpsychism. How we conceptualize consciousness is always a sort of spiritual poetry, but I think this perspective better accounts for why we ourselves are conscious despite not being different in a discontinuous way from the rest of the universe. Introduction ‘don’t hold strong opinions about things you don’t understand’ —Derek Hess Susan Blackmore believes the way we typically […].

Have we created an operating system for life? How close are we to cloning humans, and what would that even look like?

You’re in for a fascinating episode as the line between science and science fiction gets blurred. My guest is microbiologist and geneticist Andrew Hessel, the CEO and Founder of The Genome Project-Write, and author of \.

How can machine learning help individuals with type 1 diabetes (T1D)? This is what a study presented at this year’s Annual Meeting of the European Association for the Study of Diabetes (EASD) hopes to address as a team of researchers have developed a system using machine learning capable of managing blood sugars levels with such proficiency that those using system were able to lead lives far more active than the average T1D patient.

For the study, the researchers developed the AID system, which uses closed-loop technology that delivers insulin based on readings from the machine learning algorithm, resulting in a 50-year-old man, a 40-year-old man, and a 34-year-old woman with T1D being able to run hours-long marathons in Tokyo, Santiago, and Paris, respectively. This study holds the potential to help develop better technology capable of allowing T1D diabetes patients to stay in shape without constantly fearing for their blood sugar levels, which can lead to long-term health problems, including hyperglycemia, nerve damage, or a heart attack.

“Despite better systems for monitoring blood sugars and delivering insulin, maintaining glucose levels in target range during aerobic training and athletic competition is especially difficult,” said Dr. Maria Onetto, who is in the Department of Nutrition at the Pontifical Catholic University of Chile and lead author of the study. “The use of automated insulin delivery technology is increasing, but exercise continues to be a challenge for individuals with T1D, who can still struggle to reach the recommended blood sugar targets.”

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations. [ 1 ]

A can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both).

Wormholes are consistent with the general theory of relativity, but whethers actually exist is uncertain. Many scientists postulate thats are merely projections of a fourth spatial dimension, analogous to how a two-dimensional (2D) being could experience only part of a three-dimensional (3D) object. [ 2 ] A well-known analogy of such constructs is provided by the Klein bottle, displaying a hole when rendered in three dimensions but not in four or higher dimensions.