Toggle light / dark theme

‘Humans are extraordinarily special’. Not new but well worth remembering.


Either way, their conclusion is that, like stick-shift cars, extraterrestrial civilizations are few and far between. The implication is that our nearest cosmic chums are at least several thousand light-years away.

You may wonder why this story has raised eyebrows. Well, it would make Homo sapiens extraordinarily special, despite the fact that the galaxy is stuffed with planets. It discomfits scientists (including me) because, historically, every time we’ve thought we occupy a privileged position in the universe, we were wrong. Remember that six centuries ago, learned folk would have assured you that Earth was the center of the cosmos.

UC scientists and physicians hope to permanently cure patients of sickle cell disease by using CRISPR-Cas9 to replace a defective gene with the normal version.


In 2014, two years after her Nobel Prize-winning invention of CRISPR-Cas9 genome editing, Jennifer Doudna thought the technology was mature enough to tackle a cure for a devastating hereditary disorder, sickle cell disease, that afflicts millions of people around the world, most of them of African descent. Some 100000 Black people in the U.S. are afflicted with the disease.

Mobilizing colleagues in the then-new Innovative Genome Institute (IGI) — a joint research collaboration between the University of California, Berkeley, and UC San Francisco — they sought to repair the single mutation that makes red blood cells warp and clog arteries, causing excruciating pain and often death. Available treatments today typically involve regular transfusions, though bone marrow transplants can cure those who can find a matched donor.

After six years of work, that experimental treatment has now been approved for clinical trials by the U.S. Food and Drug Administration, enabling the first tests in humans of a CRISPR-based therapy to directly correct the mutation in the beta-globin gene responsible for sickle cell disease. Beta-globin is one of the proteins in the hemoglobin complex responsible for carrying oxygen throughout the body.

When the researchers used their system to measure the qubits’ state, they achieved an accuracy of 98 percent, exactly the same as when they carried out the measurement using a conventional electrical cable.

The authors acknowledge that work is already underway to try and reduce the heat produced by current approaches, including the development of thinner wires, proposals to replace wires with superconducting cables, or a process called multiplexing that makes it possible to send many signals over the same cable simultaneously.

But optical fiber is a well-established technology, and is already replacing electrical wires in many areas of computing thanks to its ability to carry far more data. The authors also point out that components used in this experiment were designed to work at room temperature, so optimizing them for cryogenic temperatures could provide significant performance gains.

There’s a new crypto converter on the market for those looking for a more seamless way to send and receive money internationally.

With the emergence of crypto remittance companies in recent years, a group of undergraduates based in Nigeria teamed up to stake their claim in the market. Software engineers Ben Eluan and Osezele Orukpe became the CEO and CTO, respectively, of their company, Flux, a new crypto remittance company that allows merchants to send and receive money from anywhere in the world, TechCrunch reports. Through Flux, users can convert fiat funds into crypto that can be sent to people in other countries without all the time constraints and exorbitant fees.

Related: 10 of the Most Successful Black Entrepreneurs.

It’s a glass dome with a view.


When SpaceX launches four civilian astronauts on the private Inspiration4 spaceflight, they’re going to have the ultimate window: a glass dome offering panoramic views of Earth from space.

While SpaceX’s Crew Dragon spacecraft for the mission is already equipped with flat windows, the Inspiration4 mission — which is set to launch later this year with billionaire Jared Isaacman, who chartered the flight with SpaceX, commanding the crew — will include a unique domed window, allowing crew members to get a 360-degree view of their surroundings. That new window, and the Inspiration4 mission’s full crew, were announced in a press conference today (March 30).

Univ. of Toronto Researcher: “I did not realize quite how bad [the lack of reproducibility and poor quality in research papers] was.”


Many areas of science have been facing a reproducibility crisis over the past two years, and machine learning and AI are no exception. That has been highlighted by recent efforts to identify papers with results that are reproducible and those that are not.

Two new analyses put the spotlight on machine learning in health research, where lack of reproducibility and poor quality is especially alarming. “If a doctor is using machine learning or an artificial intelligence tool to aid in patient care, and that tool does not perform up to the standards reported during the research process, then that could risk harm to the patient, and it could generally lower the quality of care,” says Marzyeh Ghassemi of the University of Toronto.

In a paper describing her team’s analysis of 511 other papers, Ghassemi’s team reported that machine learning papers in healthcare were reproducible far less often than in other machine learning subfields. The group’s findings were published this week in the journal Science Translational Medicine. And in a systematic review published in Nature Machine Intelligence, 85 percent of studies using machine learning to detect COVID-19 in chest scans failed a reproducibility and quality check, and none of the models was near ready for use in clinics, the authors say.

Didn’t watch the video.


Prof David R. Liu, Professor at Harvard University, the Broad Institute, and HHMI was interviewed by the Sheeky Science Show. In the interview, they discussed how to make precise genome editing safe & efficient using the latest CRISPR tech advances in base editing and prime editing and taking it to the clinic (e.g Beam Therapeutics). They talked about the next frontier, epigenome editing.

**Five years ago, scientists created a single-celled synthetic organism that, with only 473 genes, was the simplest living cell ever known.** However, this bacteria-like organism behaved strangely when growing and dividing, producing cells with wildly different shapes and sizes.

Now, scientists have identified seven genes that can be added to tame the cells’ unruly nature, causing them to neatly divide into uniform orbs. This achievement, a collaboration between the J. Craig Venter Institute (JCVI), the National Institute of Standards and Technology (NIST) and the Massachusetts Institute of Technology (MIT) Center for Bits and Atoms, was described in the journal Cell.

Identifying these genes is an important step toward engineering synthetic cells that do useful things. Such cells could act as small factories that produce drugs, foods and fuels; detect disease and produce drugs to treat it while living inside the body; and function as tiny computers.

But to design and build a cell that does exactly what you want it to do, it helps to have a list of essential parts and know how they fit together.

“We want to understand the fundamental design rules of life,” said Elizabeth Strychalski, a co-author on the study and leader of NIST’s Cellular Engineering Group. “If this cell can help us to discover and understand those rules, then we’re off to the races.”

Scientists at JCVI constructed the first cell with a synthetic genome in 2010. They didn’t build that cell completely from scratch. Instead, they started with cells from a very simple type of bacteria called a mycoplasma. They destroyed the DNA in those cells and replaced it with DNA that was designed on a computer and synthesized in a lab. This was the first organism in the history of life on Earth to have an entirely synthetic genome. They called it JCVI-syn1.0.

***Continue reading in the article, fascinating — DL***.